Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virus in babies may cause asthma later on

11.07.2002

While most scientists believe that allergies cause asthma, researchers at Washington University School of Medicine in St. Louis are uncovering a second potential cause for this common respiratory illness. Their new model suggests that a viral infection in the first years of life may leave a lasting mark on the immune system, causing chronic respiratory problems later on.

"While the allergic response may increase during an asthma attack, our research suggests that the anti-viral response also increases," says Michael J. Holtzman, M.D., the Selma and Herman Seldin Professor of Medicine and professor of cell biology and physiology. "We think that a virus in infancy or childhood creates a hit-and-run effect, where a brief infection causes permanent changes in the body’s anti-viral system."

Holtzman led the study, which appears in the July 15 issue of the Journal of Clinical Investigation.

The most common cause of lower respiratory illness in children is paramyxoviral infection, which often results in chronic wheezing regardless of whether the child develops allergies. But researchers have yet to figure out how the short-term influence of this viral infection leads to a long-term condition of respiratory inflammation and distress.

Holtzman’s team examined mice with bronchiolitis – inflamed airways – caused by paramyxoviral infection. The mouse disease mimics paramyxoviral infection in humans. These mice responded immediately to the infection – immune cells flooded the lining of the respiratory tract, attacking infectious cells and inflaming the tissues. Weeks after infection, the airways of the lung remained extremely sensitive, or hyperreactive, and the airway lining became populated with mucus-producing cells. Each of these changes – airway hyperreactivity and cellular remodeling – lasted for at least one year and perhaps indefinitely. "Since each of these changes also is a long-term symptom of asthma, these findings provide a link between the response to viral infection and the development of asthma," says Holtzman.

Uninfected mice that instead were exposed to a common experimental allergen, called ovalbumin, also developed similar inflammation of the airways, but these mice recovered by themselves within two and a half months.

To see what happens if the initial airway response was prevented, the researchers examined mice lacking the gene that encodes one of the main proteins that control immune-cell traffic, intercellular adhesion molecule-1 (ICAM-1). As expected, mice lacking ICAM-1 that were infected with this virus were initially healthier than their normal counterparts, with far less airway inflammation, less weight loss and lower mortality rates.

Interestingly, though, these genetically altered mice still developed chronic asthma-like changes similar to normal mice – they reached the same level of airway hyperreactivity and mucus-producing cells as normal mice by 11 weeks after infection.

The team also discovered that mice treated with glucocorticoid, a common anti-asthma medication, before cellular remodeling began were at least partially protected from the chronic effects of viral infection.

"Our findings raise the possibility that asthma not only resembles a persistent anti-viral response, but may actually be caused by one," says Holtzman. "These results in mice provide a further basis for determining exactly how similar events may develop in children and adults with asthma."

###

Walter MJ, Morton JD, Kajiwara N, Agapov E, Holtzman MJ. Viral induction of a chronic asthma phenotype and genetic segregation from the acute response. Journal of Clinical Investigation, Vol. 110, pg. 165 – 175, July 15, 2002.

Funding from the National Heart, Lung and Blood Institute, the American Lung Association, the Martin Schaeffer Fund and the Alan A. and Edith L. Wolff Charitable Trust supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Gila Reckess | EurekAlert

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Tune your radio: galaxies sing while forming stars

21.02.2017 | Physics and Astronomy

Improved Speech Intelligibility and Automatic Speech-to-Text Conversion for Call Centers

21.02.2017 | Trade Fair News

36 big data research projects

21.02.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>