Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetes treatment linked to increased blood pressure in animal study

11.07.2002

A report in the July issue of the Journal of Clinical Investigation has found that a group of drugs currently under development for the treatment of Type II diabetes caused both increased heart rate and elevated blood pressure in animal studies.

These new findings regarding glucagon-like peptide (GLP-1) receptor agonists suggest that the brain’s GLP-1 system has the ability to affect autonomic function, leading to changes in heart rate and blood pressure.

A naturally occurring hormone that is produced by cells lining the intestine, GLP-1 was first targeted as a diabetes treatment about 15 years ago, according to the study’s senior author Joel Elmquist, D.V.M., Ph.D., a neuroscientist and endocrinologist at Beth Israel Deaconess Medical Center and Associate Professor of Neurology and Medicine at Harvard Medical School.

"GLP-1 stimulates insulin secretion and controls feeding and drinking behavior, and also regulates neuroendocrine responses to agents that elicit illness-like behaviors," he explains. "The effect on insulin secretion made the hormone an obvious target for treating diabetes."

Diabetes develops when the body fails to either produce or to properly use insulin, a hormone necessary to convert food – including sugars and starches – into energy. Type II diabetes accounts for the majority of cases of the disease, and is a huge public health problem: As many as 16 million individuals in the United States have Type II diabetes, which puts them at risk for a number of serious complications, including stroke and heart disease.

Although diabetes can often be controlled through diet, exercise and existing medications, the magnitude of the problem has given rise to the development of a number of new drugs to better manage the disease, including the GLP-1 agonists. These agents, which are currently being tested in clinical trials, work by targeting the rate of gastric emptying and by stimulating insulin secretion from islet cells in the pancreas.

Circulating levels of the naturally occurring GLP-1 hormone in health individuals are low when the body is in a fasting state, according to Elmquist. After a person has eaten, GLP-1 levels rise, only to fall within minutes as a result of enzymatic activity. In fact, he adds, continuous infusion of GLP-1 does not increase either blood pressure or heart rate in humans with Type II diabetes.

However, in drug form, GLP-1 analogs such as EXENDIN-4 have a far more potent and long-lasting influence. In the studies on rodents conducted in Elmquist’s lab, the researchers demonstrated that EXENDIN-4 – which is being tested as a therapeutic agent – activated several key autonomic regulatory sites in the brain, leading to increased heart rate and blood pressure in the animals.

"Despite accumulating data linking GLP-1 to autonomic and neuroendocrine responses, the pathways [responsible] for the actions were previously not well understood," explains Elmquist. "Although these new findings in animals will need to be studied further, especially in diabetic models, this research suggests that the central GLP-1 system can regulate sympathetic outflow including raising heart rate and blood pressure."

###

Study co-authors include Beth Israel Deaconess researchers Hiroshi Yamamoto, M.D., Ph.D., Charlotte Lee, M.S., Jacob Marcus, B.S., Marisol Lopez, Ph.D., and Anthony Hollenberg, M.D.; Todd Williams, Ph.D., and J. Michael Overton, Ph.D., of Florida State University; and Laurie Baggio, Ph.D., and co-principal investigator Daniel Drucker, M.D., of the Banting and Best Diabetes Center at the University of Toronto.

The study was funded by grants from the National Institute of Diabetes and Digestive and Kidney Diseases and the National Institutes of Health.

Beth Israel Deaconess Medical Center is a major patient care, research and teaching affiliate of Harvard Medical School and a founding member of CareGroup Healthcare System. Beth Israel Deaconess is the third largest recipient of National Institutes of Health funding among independent U.S. teaching hospitals.

Bonnie Prescott | EurekAlert

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>