Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Diabetes treatment linked to increased blood pressure in animal study


A report in the July issue of the Journal of Clinical Investigation has found that a group of drugs currently under development for the treatment of Type II diabetes caused both increased heart rate and elevated blood pressure in animal studies.

These new findings regarding glucagon-like peptide (GLP-1) receptor agonists suggest that the brain’s GLP-1 system has the ability to affect autonomic function, leading to changes in heart rate and blood pressure.

A naturally occurring hormone that is produced by cells lining the intestine, GLP-1 was first targeted as a diabetes treatment about 15 years ago, according to the study’s senior author Joel Elmquist, D.V.M., Ph.D., a neuroscientist and endocrinologist at Beth Israel Deaconess Medical Center and Associate Professor of Neurology and Medicine at Harvard Medical School.

"GLP-1 stimulates insulin secretion and controls feeding and drinking behavior, and also regulates neuroendocrine responses to agents that elicit illness-like behaviors," he explains. "The effect on insulin secretion made the hormone an obvious target for treating diabetes."

Diabetes develops when the body fails to either produce or to properly use insulin, a hormone necessary to convert food – including sugars and starches – into energy. Type II diabetes accounts for the majority of cases of the disease, and is a huge public health problem: As many as 16 million individuals in the United States have Type II diabetes, which puts them at risk for a number of serious complications, including stroke and heart disease.

Although diabetes can often be controlled through diet, exercise and existing medications, the magnitude of the problem has given rise to the development of a number of new drugs to better manage the disease, including the GLP-1 agonists. These agents, which are currently being tested in clinical trials, work by targeting the rate of gastric emptying and by stimulating insulin secretion from islet cells in the pancreas.

Circulating levels of the naturally occurring GLP-1 hormone in health individuals are low when the body is in a fasting state, according to Elmquist. After a person has eaten, GLP-1 levels rise, only to fall within minutes as a result of enzymatic activity. In fact, he adds, continuous infusion of GLP-1 does not increase either blood pressure or heart rate in humans with Type II diabetes.

However, in drug form, GLP-1 analogs such as EXENDIN-4 have a far more potent and long-lasting influence. In the studies on rodents conducted in Elmquist’s lab, the researchers demonstrated that EXENDIN-4 – which is being tested as a therapeutic agent – activated several key autonomic regulatory sites in the brain, leading to increased heart rate and blood pressure in the animals.

"Despite accumulating data linking GLP-1 to autonomic and neuroendocrine responses, the pathways [responsible] for the actions were previously not well understood," explains Elmquist. "Although these new findings in animals will need to be studied further, especially in diabetic models, this research suggests that the central GLP-1 system can regulate sympathetic outflow including raising heart rate and blood pressure."


Study co-authors include Beth Israel Deaconess researchers Hiroshi Yamamoto, M.D., Ph.D., Charlotte Lee, M.S., Jacob Marcus, B.S., Marisol Lopez, Ph.D., and Anthony Hollenberg, M.D.; Todd Williams, Ph.D., and J. Michael Overton, Ph.D., of Florida State University; and Laurie Baggio, Ph.D., and co-principal investigator Daniel Drucker, M.D., of the Banting and Best Diabetes Center at the University of Toronto.

The study was funded by grants from the National Institute of Diabetes and Digestive and Kidney Diseases and the National Institutes of Health.

Beth Israel Deaconess Medical Center is a major patient care, research and teaching affiliate of Harvard Medical School and a founding member of CareGroup Healthcare System. Beth Israel Deaconess is the third largest recipient of National Institutes of Health funding among independent U.S. teaching hospitals.

Bonnie Prescott | EurekAlert

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>