Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetes treatment linked to increased blood pressure in animal study

11.07.2002

A report in the July issue of the Journal of Clinical Investigation has found that a group of drugs currently under development for the treatment of Type II diabetes caused both increased heart rate and elevated blood pressure in animal studies.

These new findings regarding glucagon-like peptide (GLP-1) receptor agonists suggest that the brain’s GLP-1 system has the ability to affect autonomic function, leading to changes in heart rate and blood pressure.

A naturally occurring hormone that is produced by cells lining the intestine, GLP-1 was first targeted as a diabetes treatment about 15 years ago, according to the study’s senior author Joel Elmquist, D.V.M., Ph.D., a neuroscientist and endocrinologist at Beth Israel Deaconess Medical Center and Associate Professor of Neurology and Medicine at Harvard Medical School.

"GLP-1 stimulates insulin secretion and controls feeding and drinking behavior, and also regulates neuroendocrine responses to agents that elicit illness-like behaviors," he explains. "The effect on insulin secretion made the hormone an obvious target for treating diabetes."

Diabetes develops when the body fails to either produce or to properly use insulin, a hormone necessary to convert food – including sugars and starches – into energy. Type II diabetes accounts for the majority of cases of the disease, and is a huge public health problem: As many as 16 million individuals in the United States have Type II diabetes, which puts them at risk for a number of serious complications, including stroke and heart disease.

Although diabetes can often be controlled through diet, exercise and existing medications, the magnitude of the problem has given rise to the development of a number of new drugs to better manage the disease, including the GLP-1 agonists. These agents, which are currently being tested in clinical trials, work by targeting the rate of gastric emptying and by stimulating insulin secretion from islet cells in the pancreas.

Circulating levels of the naturally occurring GLP-1 hormone in health individuals are low when the body is in a fasting state, according to Elmquist. After a person has eaten, GLP-1 levels rise, only to fall within minutes as a result of enzymatic activity. In fact, he adds, continuous infusion of GLP-1 does not increase either blood pressure or heart rate in humans with Type II diabetes.

However, in drug form, GLP-1 analogs such as EXENDIN-4 have a far more potent and long-lasting influence. In the studies on rodents conducted in Elmquist’s lab, the researchers demonstrated that EXENDIN-4 – which is being tested as a therapeutic agent – activated several key autonomic regulatory sites in the brain, leading to increased heart rate and blood pressure in the animals.

"Despite accumulating data linking GLP-1 to autonomic and neuroendocrine responses, the pathways [responsible] for the actions were previously not well understood," explains Elmquist. "Although these new findings in animals will need to be studied further, especially in diabetic models, this research suggests that the central GLP-1 system can regulate sympathetic outflow including raising heart rate and blood pressure."

###

Study co-authors include Beth Israel Deaconess researchers Hiroshi Yamamoto, M.D., Ph.D., Charlotte Lee, M.S., Jacob Marcus, B.S., Marisol Lopez, Ph.D., and Anthony Hollenberg, M.D.; Todd Williams, Ph.D., and J. Michael Overton, Ph.D., of Florida State University; and Laurie Baggio, Ph.D., and co-principal investigator Daniel Drucker, M.D., of the Banting and Best Diabetes Center at the University of Toronto.

The study was funded by grants from the National Institute of Diabetes and Digestive and Kidney Diseases and the National Institutes of Health.

Beth Israel Deaconess Medical Center is a major patient care, research and teaching affiliate of Harvard Medical School and a founding member of CareGroup Healthcare System. Beth Israel Deaconess is the third largest recipient of National Institutes of Health funding among independent U.S. teaching hospitals.

Bonnie Prescott | EurekAlert

More articles from Health and Medicine:

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

nachricht A new approach to high insulin levels
18.09.2017 | Schweizerischer Nationalfonds SNF

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>