Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists from Granada drastically reduce the wait time for new teeth implant

17.06.2008
A new odontological technique manages to reduce from six months to two weeks the wait time to implant new teeth. It is possible thanks to the use of the growth hormone in oral implantology, which allows bone regeneration and the hastening of the integration between bone base and dental implant.

The use of the growth hormone in oral implantology has managed to regenerate the bone and hasten the integration between the bone base and the dental implant. The process allows to reduce from six months to two weeks the wait time to place the crown which replaces the lost tooth on the oral implant.

This advance has been the resulto f the research of the doctoral thesis “Growth hormone and osteointegration in the oral cavity” by Cecilia Vander Worf Úbeda, supervised by Professors Antonio Cutando Soriano and Gerardo Gómez Moreno (School of Odontology of the University of Granada, Spain).

“We must consider –says Cutando- that a dental impant is successful when it is possible to get a firm, stable and lasting joint between the bone substratum and the crown constructed on it, in which we call prosthetic restoration. That was the goal of this research work, which has also managed to improve the patients’ quality of life reducing the wait period to receive a new tooth”.

The Works were developed all through three years with a methodology applied to 13 dogs, with the authorization of the Ethical Committee of the University of Granada.

Hastened biointegration
The research carried out by Cecilia Vander Worf obtained a good and fast biointegration, which consists of “the direct biochemical joint between the raw bone and the surface of the implant, demonstrable through electronic microscopy, irrespective of any mechanical joint mechanism”.

Osteointegration requires the formation of new bone around the implant, a process resulting from remodelling the interior of the bone tissue. “The process –says Vander Worf- starts with the osteoclasts, the cells responsible for reabsorbing the necrotic area originated by bone milling during the preparation of the bone recipient bed. Together with them, vascular neoformation will provide the cell elements, the osteoblasts, which will create new bone able to interact with the titanium oxide layer f the implant for the biological integration of it”.

The doctoral thesis has been carried out in the Framework of the Research Project “tudy of the synergism between Melatonin and Growth Hormone (GH) on the processes of osteointegration in dental implants and bone regeneration in the oral cavity”, financed by the Spanish Ministry of Health and Consumptiom, the Spanish Ministry of Education and Science, the Carlos III Health Institute and the Andalusian Council.

The results of this work have been published in different papers in the last years; the most recent are:

-Cutando A, Gómez Moreno G, Arana C, et al. Melatonin stimulates osteointegration of dental implants. J Pineal Res. 2008 Feb 19; Vol. 49.

-Cutando A, Gómez-Moreno G, Arana C, et al. Melatonin reduces oxidative stress because of tooth removal. J Pineal Res. 2007 Apr; 42(4):419-20.

Note: download video in TV quality (300 MB): http://www.ugr.es/~ri/videos/

Reference: Department of Stomatology of the School of Odontology of the UGR. Professors Cecilia Vander Worf Úbeda (cecivan@correo.ugr.es), Antonio Cutando Soriano (acutando@ugr.es) and Gerardo Gómez Moreno (ggomez@ugr.es).

Antonio Marín Ruiz | alfa
Further information:
http://www.ugr.es
http://www.ugr.es/~ri/videos/

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>