Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists from Granada drastically reduce the wait time for new teeth implant

17.06.2008
A new odontological technique manages to reduce from six months to two weeks the wait time to implant new teeth. It is possible thanks to the use of the growth hormone in oral implantology, which allows bone regeneration and the hastening of the integration between bone base and dental implant.

The use of the growth hormone in oral implantology has managed to regenerate the bone and hasten the integration between the bone base and the dental implant. The process allows to reduce from six months to two weeks the wait time to place the crown which replaces the lost tooth on the oral implant.

This advance has been the resulto f the research of the doctoral thesis “Growth hormone and osteointegration in the oral cavity” by Cecilia Vander Worf Úbeda, supervised by Professors Antonio Cutando Soriano and Gerardo Gómez Moreno (School of Odontology of the University of Granada, Spain).

“We must consider –says Cutando- that a dental impant is successful when it is possible to get a firm, stable and lasting joint between the bone substratum and the crown constructed on it, in which we call prosthetic restoration. That was the goal of this research work, which has also managed to improve the patients’ quality of life reducing the wait period to receive a new tooth”.

The Works were developed all through three years with a methodology applied to 13 dogs, with the authorization of the Ethical Committee of the University of Granada.

Hastened biointegration
The research carried out by Cecilia Vander Worf obtained a good and fast biointegration, which consists of “the direct biochemical joint between the raw bone and the surface of the implant, demonstrable through electronic microscopy, irrespective of any mechanical joint mechanism”.

Osteointegration requires the formation of new bone around the implant, a process resulting from remodelling the interior of the bone tissue. “The process –says Vander Worf- starts with the osteoclasts, the cells responsible for reabsorbing the necrotic area originated by bone milling during the preparation of the bone recipient bed. Together with them, vascular neoformation will provide the cell elements, the osteoblasts, which will create new bone able to interact with the titanium oxide layer f the implant for the biological integration of it”.

The doctoral thesis has been carried out in the Framework of the Research Project “tudy of the synergism between Melatonin and Growth Hormone (GH) on the processes of osteointegration in dental implants and bone regeneration in the oral cavity”, financed by the Spanish Ministry of Health and Consumptiom, the Spanish Ministry of Education and Science, the Carlos III Health Institute and the Andalusian Council.

The results of this work have been published in different papers in the last years; the most recent are:

-Cutando A, Gómez Moreno G, Arana C, et al. Melatonin stimulates osteointegration of dental implants. J Pineal Res. 2008 Feb 19; Vol. 49.

-Cutando A, Gómez-Moreno G, Arana C, et al. Melatonin reduces oxidative stress because of tooth removal. J Pineal Res. 2007 Apr; 42(4):419-20.

Note: download video in TV quality (300 MB): http://www.ugr.es/~ri/videos/

Reference: Department of Stomatology of the School of Odontology of the UGR. Professors Cecilia Vander Worf Úbeda (cecivan@correo.ugr.es), Antonio Cutando Soriano (acutando@ugr.es) and Gerardo Gómez Moreno (ggomez@ugr.es).

Antonio Marín Ruiz | alfa
Further information:
http://www.ugr.es
http://www.ugr.es/~ri/videos/

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>