Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salmonella: Trickier than we imagined

17.06.2008
Salmonella is serving up a surprise not only for tomato lovers around the country but also for scientists who study the rod-shaped bacterium that causes misery for millions of people.

In research published June 4 in the online journal PloS One, researchers say they've identified a molecular trick that may explain part of the bacteria's fierceness. A team from the University of Rochester Medical Center has identified a protein that allows the bacteria to maintain a low profile in the body, giving the bacteria crucial time to quietly gain a foothold in an organism before the immune system is roused to fight the invader.

"Inflammation immediately after a bacterial infection occurs helps the body fight off bugs like Salmonella quickly," said Jun Sun, Ph.D., the leader of the team and assistant professor of Gastroenterology and Hepatology. "But it may be that Salmonella is especially equipped with tools to allow it to evade the immune system early on, growing quietly and then really making the host quite ill. Salmonella is trickier than we imagined."

Sun's team found that a virulence protein known as AvrA dampens the inflammatory response. That helps the bacteria avoid the wrath of the immune system and gives the infection crucial time to grow and develop before it needs to expend energy to fight off immune cells like neutrophils, which would attack the intruder more quickly if the bacteria attacked the body in a more clear-cut fashion.

"AvrA allows Salmonella to make peace with you, buying the bacteria a little time to survive in the body," said Sun. "That's bad news for the body, because then the bacteria spreads. AvrA allows the bacteria to do harm in the body without the body realizing it. Bacteria have been evolving for millions of years. That gives them some tricks that perhaps we don't understand yet."

AvrA is one of several proteins in Salmonella that affect cells in the wall of the intestines and stomach known as epithelial cells. These cells link up tightly together thanks to molecules known as tight junction proteins, which form an elaborate barrier to keep molecules and substances in or out of the colon. The bacterium employs several proteins enabling it to loosen these junctions, effectively breaking up the barrier and making the body vulnerable to the infection.

While several of Salmonella's proteins allow it to loosen up and punch through this latticework, Sun's team unexpectedly found that AvrA allows the bacteria to maintain these tight junctions. This ability reduces the body's inflammatory response and allows the bacteria to avoid detection by the immune system for some time, enabling the bacteria to survive in the host. The severe symptoms of infection, including nausea, vomiting, diarrhea, and abdominal cramps, typically hit anywhere from 8 to 72 hours after initial exposure to the bug.

"It's a surprising finding, which is why we've repeated our studies many times and done tests in different experimental models," said Sun, whose team studied the phenomenon in the laboratory, in mice, and in cultured human cells.

AvrA is one of several virulence proteins that Salmonella has at its disposal, using syringe-like molecular machinery to shoot toxins and proteins into cells just seconds after its first encounter with a cell in the small or large intestine. The protein is especially adept at functioning in low-acid locales like the gut and bears close resemblance to a virulence protein known as YopJ that is active in Yersinia – the bug that caused the Black Plague.

Sun is one of several scientists who have shown that AvrA reduces inflammation in the body, acting to some degree like new arthritis medications by reducing the activity of an inflammatory molecule known as NF-Kappa B.

There are thousands of types of the bug. Sun studied Salmonella Typhimurium, one of the two most common types; that bacterium and Salmonella enteritidis together cause more than half the Salmonella illnesses seen in people. While the current outbreak in tomato involves a much more rare form, Salmonella saintpaul, Sun says that the AvrA gene is in more than 80 percent of Salmonella types overall, including the "saintpaul" variety.

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht Observing the cell's protein factories during self-assembly
15.06.2018 | Charité - Universitätsmedizin Berlin

nachricht Scientists unravel molecular mechanisms of Parkinson's disease
13.06.2018 | The Francis Crick Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>