Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M researchers discover traits of aggressive form of prostate cancer

10.06.2008
Discovery could lead to a diagnostic urine test

Researchers led by a team at the Michigan Center for Translational Pathology at the University of Michigan Health System have identified traits of an aggressive type of prostate cancer that occurs in about 10 percent of men who have the disease. They hope the discovery could lead, possibly within the next few years, to a simple urine test that will help to diagnose this variation of prostate cancer.

Previous studies by this group of researchers have shown that most prostate cancer is caused in part by a gene fusion – the merging of two unrelated genes, which plays a role in at least 50 percent of prostate cancer cases.

To shed light on the prostate cancers that don't involve gene fusion, the researchers in the current study analyzed data on 1,800 prostate cancers to find commonalities in their genetic aberrations. They learned that a gene called SPINK1 (serine peptidase inhibitor, Kazal type 1) was over-expressed, or found in excess amounts, in prostate cancers that do not have gene fusions. The finding suggests that SPINK1 is a biomarker – a molecule in bodily fluids, blood and tissue that can be a signal of a disease – for a subtype of prostate cancer.

The findings, reported in the June issue of the journal Cancer Cell, also suggest that men with SPINK1–related prostate cancers tend to have a quicker recurrence of the disease than those with other types of prostate cancer.

"Our study is really the first to look at what is happening molecularly with fusion-negative prostate cancers," says Scott Tomlins, Ph.D., first author of the paper and an M.D./Ph.D. student at the U-M Medical School.

"Because SPINK1 can be found non-invasively in urine, a test could be developed that would complement current urine testing that is used to detect some prostate cancer or future urine tests for gene fusions," adds senior author Arul Chinnaiyan, M.D., Ph.D., director of the Michigan Center for Translational Pathology and S.P. Hicks Endowed Professor of Pathology at the U-M Medical School.

An estimated 186,320 new cases of prostate cancer will be diagnosed this year, according to the National Cancer Institute, and more than 28,000 men will die from the disease this year. More than 70 percent of men diagnosed with prostate cancer are older than 65.

Current tests for prostate cancer include prostate-specific antigen (PSA) blood tests. Increased levels of PSA can indicate that prostate cancer is present. Another test is a digital rectal examination, which can detect abnormalities in the prostate. Another urine-based test screens for PCA3 as a specific biomarker of prostate cancer.

Background: In 2005, Chinnaiyan and his team made the landmark discovery that in prostate cancer, pieces of two chromosomes trade places with each other. This switch, or translocation, causes two unrelated genes to be placed next to each other and fuse together. The abnormal gene fusion associated with prostate cancer occurs when one of two genes, ERG or ETV1, merges with a prostate-specific gene called TMPRSS2.

Before this discovery, it was thought that gene fusions only occurred in blood cancers, such as leukemias and lymphomas, but not in common solid tumors such as prostate cancer. Chinnaiyan's discovery demonstrated that these gene fusions could be found in solid tumors and has opened an entire field of research. This discovery may lead to better diagnostic tests and new treatments for prostate cancer.

Earlier this year, Chinnaiyan's team published a study about a urine test that more accurately detects prostate cancer than any other screening method currently in use. They built on the PCA3 test by screening for six additional biomarkers and some molecules. In their research, the team accurately identified 80 percent of patients who were later found to have prostate cancer, and they were 61 percent effective in ruling out disease in other study participants.

Methodology: In the current study, the team used a bioinformatics analysis method called Cancer Outlier Profile Analysis (COPA) developed by Tomlins and Daniel Rhodes, Ph.D., in Chinnaiyan's laboratory. COPA makes it possible for researchers to detect extremely high expression levels of outlier genes, or genes with characteristics outside the norm.

Using data from seven studies, they found SPINK1 was over-expressed in prostate cancer when compared to benign prostate cells, and that it was found exclusively in cancers that did not involve ERG or ETV1 gene fusions.

For more information:

U-M Comprehensive Cancer Center mcancer.org
Michigan Center for Translational Pathology www.med.umich.edu/mctp/
Prostate cancer treatment at the U-M Comprehensive Cancer Center www.cancer.med.umich.edu/cancertreat/urologiconcology/prostate_cancer.shtml
New, non-invasive prostate cancer test beats PSA in detecting prostate cancer www2.med.umich.edu/prmc/media/newsroom/details.cfm?ID=54
National Cancer Institute prostate cancer information www.cancer.gov/cancertopics/types/prostate
Cancer Cell www.cancercell.org/
Chinniayan's HHMI page www.hhmi.org/research/investigators/chinnaiyan_bio.html
Patients seeking more information about currently available cancer treatments can call the Cancer AnswerLine at 800-865-1125.

Authors: In addition to Tomlins, Chinnaiyan and Rhodes, U-M researchers were from the Comprehensive Cancer Center, Michigan Center for Translational Pathology, Center for Computational Medicine and Biology, Department of Urology, Department of Biostatistics at the U-M School of Public Health, and the Howard Hughes Medical Institute.

In addition to the U-M research team, authors of the paper are from Brigham and Women's Hospital; Harvard Medical School; Dana-Farber Cancer Institute; Institute of Pathology, University, Hospitals Ulm, Germany; Örebro University Hospital, Sweden; Karolinska Institutet, Stockholm, Sweden; Memorial Sloan-Kettering Cancer Center; Helsinki University Central Hospital, Finland; and University Hospital UMAS, Lund University, Malmö, Sweden.

Funding sources: The study and researchers are supported by the Department of Defense, National Institutes of Health, Early Detection Research Network, Prostate Cancer Foundation, Clinical Translational Research Award from the Burroughs Wellcome Foundation, Medical Scientist Training Program, SPORE from the National Cancer Institute, and numerous international organizations.

Disclosure: U-M has filed for a patent on prostate cancer gene fusions and SPINK1 as biomarkers of prostate cancer on which Chinnaiyan, Tomlins, Rhodes and Rohit Mehra are named as inventors. This technology has been licensed to Gen-Probe Inc. to develop molecular diagnostics for prostate cancer. Chinnaiyan serves as a consultant to Gen-Probe.

Katie Vloet | EurekAlert!
Further information:
http://www.umich.edu

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>