Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


U-M researchers discover traits of aggressive form of prostate cancer

Discovery could lead to a diagnostic urine test

Researchers led by a team at the Michigan Center for Translational Pathology at the University of Michigan Health System have identified traits of an aggressive type of prostate cancer that occurs in about 10 percent of men who have the disease. They hope the discovery could lead, possibly within the next few years, to a simple urine test that will help to diagnose this variation of prostate cancer.

Previous studies by this group of researchers have shown that most prostate cancer is caused in part by a gene fusion – the merging of two unrelated genes, which plays a role in at least 50 percent of prostate cancer cases.

To shed light on the prostate cancers that don't involve gene fusion, the researchers in the current study analyzed data on 1,800 prostate cancers to find commonalities in their genetic aberrations. They learned that a gene called SPINK1 (serine peptidase inhibitor, Kazal type 1) was over-expressed, or found in excess amounts, in prostate cancers that do not have gene fusions. The finding suggests that SPINK1 is a biomarker – a molecule in bodily fluids, blood and tissue that can be a signal of a disease – for a subtype of prostate cancer.

The findings, reported in the June issue of the journal Cancer Cell, also suggest that men with SPINK1–related prostate cancers tend to have a quicker recurrence of the disease than those with other types of prostate cancer.

"Our study is really the first to look at what is happening molecularly with fusion-negative prostate cancers," says Scott Tomlins, Ph.D., first author of the paper and an M.D./Ph.D. student at the U-M Medical School.

"Because SPINK1 can be found non-invasively in urine, a test could be developed that would complement current urine testing that is used to detect some prostate cancer or future urine tests for gene fusions," adds senior author Arul Chinnaiyan, M.D., Ph.D., director of the Michigan Center for Translational Pathology and S.P. Hicks Endowed Professor of Pathology at the U-M Medical School.

An estimated 186,320 new cases of prostate cancer will be diagnosed this year, according to the National Cancer Institute, and more than 28,000 men will die from the disease this year. More than 70 percent of men diagnosed with prostate cancer are older than 65.

Current tests for prostate cancer include prostate-specific antigen (PSA) blood tests. Increased levels of PSA can indicate that prostate cancer is present. Another test is a digital rectal examination, which can detect abnormalities in the prostate. Another urine-based test screens for PCA3 as a specific biomarker of prostate cancer.

Background: In 2005, Chinnaiyan and his team made the landmark discovery that in prostate cancer, pieces of two chromosomes trade places with each other. This switch, or translocation, causes two unrelated genes to be placed next to each other and fuse together. The abnormal gene fusion associated with prostate cancer occurs when one of two genes, ERG or ETV1, merges with a prostate-specific gene called TMPRSS2.

Before this discovery, it was thought that gene fusions only occurred in blood cancers, such as leukemias and lymphomas, but not in common solid tumors such as prostate cancer. Chinnaiyan's discovery demonstrated that these gene fusions could be found in solid tumors and has opened an entire field of research. This discovery may lead to better diagnostic tests and new treatments for prostate cancer.

Earlier this year, Chinnaiyan's team published a study about a urine test that more accurately detects prostate cancer than any other screening method currently in use. They built on the PCA3 test by screening for six additional biomarkers and some molecules. In their research, the team accurately identified 80 percent of patients who were later found to have prostate cancer, and they were 61 percent effective in ruling out disease in other study participants.

Methodology: In the current study, the team used a bioinformatics analysis method called Cancer Outlier Profile Analysis (COPA) developed by Tomlins and Daniel Rhodes, Ph.D., in Chinnaiyan's laboratory. COPA makes it possible for researchers to detect extremely high expression levels of outlier genes, or genes with characteristics outside the norm.

Using data from seven studies, they found SPINK1 was over-expressed in prostate cancer when compared to benign prostate cells, and that it was found exclusively in cancers that did not involve ERG or ETV1 gene fusions.

For more information:

U-M Comprehensive Cancer Center
Michigan Center for Translational Pathology
Prostate cancer treatment at the U-M Comprehensive Cancer Center
New, non-invasive prostate cancer test beats PSA in detecting prostate cancer
National Cancer Institute prostate cancer information
Cancer Cell
Chinniayan's HHMI page
Patients seeking more information about currently available cancer treatments can call the Cancer AnswerLine at 800-865-1125.

Authors: In addition to Tomlins, Chinnaiyan and Rhodes, U-M researchers were from the Comprehensive Cancer Center, Michigan Center for Translational Pathology, Center for Computational Medicine and Biology, Department of Urology, Department of Biostatistics at the U-M School of Public Health, and the Howard Hughes Medical Institute.

In addition to the U-M research team, authors of the paper are from Brigham and Women's Hospital; Harvard Medical School; Dana-Farber Cancer Institute; Institute of Pathology, University, Hospitals Ulm, Germany; Örebro University Hospital, Sweden; Karolinska Institutet, Stockholm, Sweden; Memorial Sloan-Kettering Cancer Center; Helsinki University Central Hospital, Finland; and University Hospital UMAS, Lund University, Malmö, Sweden.

Funding sources: The study and researchers are supported by the Department of Defense, National Institutes of Health, Early Detection Research Network, Prostate Cancer Foundation, Clinical Translational Research Award from the Burroughs Wellcome Foundation, Medical Scientist Training Program, SPORE from the National Cancer Institute, and numerous international organizations.

Disclosure: U-M has filed for a patent on prostate cancer gene fusions and SPINK1 as biomarkers of prostate cancer on which Chinnaiyan, Tomlins, Rhodes and Rohit Mehra are named as inventors. This technology has been licensed to Gen-Probe Inc. to develop molecular diagnostics for prostate cancer. Chinnaiyan serves as a consultant to Gen-Probe.

Katie Vloet | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>