Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New model for designing warning sounds

09.06.2008
When designing warning systems with the aid of sound it is important to be able to predict the emotional reaction of human beings to specific sounds. This is important, for example, in ensuring that the alarm sound, the auditory alert, is appropriate for a particular situation.

In his PhD dissertation at Chalmers in Sweden, Anders Sköld has investigated the emotional reactions generated by various types of sound.

How happy or worried were you when you heard the sound? How stressed were you by the sound? These are questions that were put to subjects involved in a study conducted by Anders Sköld at the Department of Applied Acoustics at Chalmers. With the aid of two parameters - positive/negative response and calm/stress response - it is possible to determine the emotional reaction to a sound. This is a new and exciting means of evaluating sound in manufacturing industry.

"An auditory alert in a vehicle of an impending collision should be designed to make you feel extremely stressed and negative," says Anders Sköld. The sound telling you that you have received a text message on your mobile, however, should not make you stressed and should preferably induce a positive response."

He has examined both artificial sounds, such as beeps, and what are known as sound icons, which are auditory representations of real events. The sound of tyres screeching or a crashing sound could, for example, be used as a sound icon to warn of a possible collision.

The test subjects reported their reactions according to a scale. The results were then compared with the results from another study dealing with the physiological reactions of the test subjects to the different sounds. They were monitored with the aid of electrodes attached to the face: activity in the smile muscle indicates a positive reaction whilst activity in the muscle near the eyebrow indicates a negative reaction.

The level of stress was measured by finger sweat. The tests showed that the subjects' estimations of their emotional reactions concurred with their physiological reactions.

Using results from the two studies, Anders Sköld created a model for predicting emotional reactions based on the physical parameters in different sounds. The model can be used, for example, as a tool in conjunction with sound design in the automotive industry.

The dissertation "Integrative Analysis of Perception and Reaction to Information and Warning Sounds in Vehicles" was defended May 30.
The abstract in Chalmers Publication Library, CPL>>
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=70105
Download press images here>>
http://chalmersnyheter.chalmers.se/bildermedia/bildkategori.jsp?category=212
Contacts
Anders Sköld, Division of Applied Acoustics, Department of Civil and Environmental Engineering, Chalmers University of Technology
Tel: +4631-772 21 92 Mobile: +46706-93 17 79
anders.skold@chalmers.se
Main supervisor: Professor Mendel Kleiner, Division of Applied Acoustics, Department of Civil and Environmental Engineering, Chalmers University of Technology
Tel: +4631-772 22 06
mendel.kleiner@chalmers.se
Co-supervisor: Daniel Vestfjäll, Division of Applied Acoustics, Department of Civil and Environmental Engineering, Chalmers University of Technology
Tel: +4631-772 22 06
danielv@chalmers.se

Sofie Hebrand | idw
Further information:
http://expertsvar.se

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>