Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Glass Apart

06.06.2008
British scientists are developing a new type of glass that can dissolve and release calcium into the body. This will enable patients to regrow bones and could signal a move away from bone transplants.

The porous glass, originally developed at Imperial College is capable of acting as an active template for new bone growth, dissolving in the body without leaving any trace of itself or any toxic chemicals. As it dissolves it releases calcium and other elements such as silicon into the adjacent body fluids, stimulating bone growth.

The glass activates genes present in human bone cells which encode proteins controlling the bone cell cycle and the differentiation of the cell to form bone matrix and rapid mineralisation of bone nodules. It is the release of soluble silica and calcium ions in specific concentrations that activate the genes. Gene activation occurs only when the timing sequence of the cell cycle is matched by that of the glass surface reactions and controlled release of the ions.

Partners at the Universities of Kent and Warwick have been carrying out experiments at the Science and Technology Facilities Council’s world leading ISIS neutron source. Research at ISIS is showing exactly how the calcium is held in the glass and thereby precisely how it is released into the body. Professor Bob Newport at the University of Kent explains that it was when the material was studied at ISIS that the process became clear.

“Although variants of these bioactive materials are already in clinical use, and the role of calcium in these materials was already understood as being critical in terms of both the stability of the glass and its bioactivity, no direct and quantitative study of the calcium atoms within the glass network had been undertaken. Using ISIS to study the relationship between these atoms and the host silicate glass via techniques unique to neutron diffraction has enabled us to move forward with the programme. The key outcome of our experiments has been a full understanding, at the level of atomic arrangements, of why it is that calcium is able so easily to leave the glass at the rate required to generate the desired response.”

By comparing samples made with natural calcium and with a calcium isotope it was possible for the first time to isolate the complex and subtle contribution of the calcium from that of all the other atoms present.

Dr Andrew Taylor, Director of the ISIS neutron source commented, “To allow people to remain active, and to contribute to society for longer, the need for new materials to replace and repair worn out and damaged tissues becomes ever more important. We’re pleased that at ISIS we can continue to contribute to cutting edge research that affects all our lives.”

Further research is planned at the ISIS Second Target Station when it opens later this year. This will investigate glass/polymer hybrids and could be instrumental in developing mechanically stronger versions of the glass that would be load bearing and available for medical use in the context of joint replacement. If the extensive research goes as expected, clinical trials could be in place in the next five years.

Contacts
Natalie Bealing, Science and Technology Facilities Council Press Office n.d.bealing@stfc.ac.uk 01235 445484

Natalie Bealing | alfa
Further information:
http://www.stfc.ac.uk

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>