Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why diesel particulates cause cardiovascular disease

04.06.2008
Håkan Törnqvist maps previously unknown mechanisms that may explain why air pollution in the form of particulates causes heart attacks, stroke, and increasing mortality in the dissertation he will be publicly defending at Umeå University on June 5.

Particulates in diesel exhaust are a substantial cause of the negative health effects traced to air pollution, above all in traffic environments. Diesel exhaust contains a number of extremely tiny particles about 1/10,000 mm in diameter, with chemical compounds bound to the surface that have been suggested to lie behind the ability of these particles to cause harmful health effects.

Individuals with lung or heart disease are especially vulnerable and are impacted most negatively during periods with high levels of air pollution. In his dissertation, Håkan Törnqvist studied the effects of diesel exhaust on healthy individuals and respective patient groups with chronic obstructive lung disease (COL) and coronary disease with atherosclerosis in the coronary artery.

The aim of the studies in the dissertation was to use controlled exposure studies to try to elucidate the mechanisms that explain why diesel exhaust particulates in polluted air cause increased morbidity in both lung and heart diseases. The studies were carried out in an exposure chamber, where the individuals were exposed for one hour to, respectively, diesel exhaust with a particulate concentration of about 300 µg/m3 and filtered air. The two exposures were in random order, so the individuals served as their own controls.

The dissertation work studied whether exposure to diesel exhaust would lead to a deterioration of the lung function and increased inflammation of the airways as measured by induced sputum (coughing samples) in patients with moderately severe but stable COL. Analysis of the cough samples could not reveal any increase in inflammation of the airways, not was there any deterioration of the lung function. Studies of the these same patients were also used to determine whether exposure to diesel exhaust can lead to increased general inflammation, can impact the capacity of the blood to coagulate, or can cause damage to the lung epithelia as measured in the blood. No general increase in blood coagulation or signs of increased inflammation in the blood could be found.

The thesis also addressed the question of whether exposure to diesel exhaust can affect the vascular function in a group of healthy individuals 2 and 6 hours after exposure. In this group exposure to diesel exhaust decreased two important and complementary blood-vessel functions: the regulation of the width of the blood vessels and the body's own ability to dissolve blood clots (fibrinolysis). What's more, the study illuminated the late course of events involved in the blood-vessel effects triggered by diesel exhaust in healthy individuals in the test. As much as 24 hours after their exposure to exhaust, the capacity of their blood vessels to expand was disturbed. Moreover there were signs of systemic inflammation, measured as an increase in inflammatory markers in the blood.

The final study in the dissertation targeted individuals with clinically fully stable coronary artery disease. The issue was whether exposure to diesel exhaust can affect the heart, decrease vessel mobility, and hamper the capacity to dissolve blood clots. A lowered capacity to dissolve blood clots was observed, together with an impaired ability of blood vessels to expand. The most important finding, however, was that after exposure to diesel exhaust patients evinced EKG signs that were consistent with a shortage of oxygen in the heart muscle. This effect was general, that is, not limited to any particular blood vessel in the heart, and it was observed despite the fact that the patients were fully stable in their coronary artery disease and were under optimal medical treatment.

The dissertation clarifies previously unknown mechanisms that can explain why air pollution in particulate form causes heart attacks, stroke, and increased mortality. It shows that diesel exhaust cause a rapid deterioration of the function of blood vessels that persists as long as 24 hours after exposure. The EKG findings in heart patients indicate acute heart effects that are consistent with increased risk of heart attack in connection with exposure to traffic.

On Thursday, June 5, Håkan Törnqvist, Department of Public Health and Clinical Medicine, Lung Medicine, Umeå University, will publiscly defend his thesis titled: Respiratory and Cardiovascular Responses to Diesel Exhaust Exposure.

The defense will take place at 1.00 p.m. in Hall E06, Building 6E, Stairway R. The external examiner is Professor Joel Kaufman, University of Washington, Seattle, WA, USA.

Håkan Törnqvist can be reached at phone: +46 (0)90-785 18 23 or e-mail hakan.tornqvist@lung.umu.se

Bertil Born | idw
Further information:
http://expertsvar.se
http://www.umu.se

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>