Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The breathing lifeline that comes at a price

04.06.2008
The ventilators on an intensive care ward of a hospital offer a vital lifeline to the sickest and most vulnerable patients, providing the oxygen that keeps them alive when they are unable to breathe for themselves.

However, the use of these machines can come at a price — every year thousands of patients are left with debilitating lung injuries, a small number of which are so serious the patient never recovers.

Now, a research collaboration between the universities of Nottingham and Leicester is to use computer modelling of lungs based on information collected from real patients to look at the best way of using ventilators to treat patients while minimising the risk of injury.

Dr Jonathan Hardman, of The University of Nottingham’s Division of Anaesthesia and Intensive Care, said: “For patients who don’t have the ability to breathe for themselves there is simply no other option than using a ventilator — it’s like carrying someone who is just too exhausted to walk.

“However, the use of these ventilators — which mechanically inflate and deflate the lungs — can cause tearing. You can be faced with a situation where a patient comes into the intensive care unit with a survivable illness but dies from a ventilator-associated injury. If they do make it out of the ICU, they could be left with lungs so badly scarred it could affect them for the rest of their life.

“Ventilator-associated injuries also extend the length of time a patient needs to spend in intensive care, putting them at risk of developing an un-related infection or the degradation of the muscles needed for breathing independently. In addition, these extra days spent on the ICU represent a huge cost to the NHS and affects the UK economy through loss of earnings from patients who are sick for longer than is necessary.

“We also have to count the human cost — it can be extremely distressing for families of patients to have to see their loved one supported by a ventilator.”

The challenge for researchers investigating ventilator-associated lung injury has been how to effectively monitor and observe the lungs of patients while on life-support. It is impossible to get monitoring equipment into the lungs themselves and x-rays are unable to provide the level of definition and clarity needed.

The £432,000 research project, funded by the Engineering and Physical Sciences Research Council (EPSCR) will see Dr Hardman working with control engineer Dr Declan Bates at The University of Leicester to produce believable computer models of lungs. These could be used to test a range of different uses of the ventilator, for example, varying the amount of oxygen supplied to the patient or the number of breaths per minute provided by the machine.

Real-life data collected in the autumn by researchers from patients on the Intensive Care Unit at Nottingham’s Queen’s Medical Centre will be used to create the computer models. The results of that work will then be taken out into clinical trials.

Dr Hardman said: “We plan to recreate a population of patients with a variety of illnesses and injuries which will allow us to look at the different permutations of treatment for those. Eventually this could lead to computer management of ventilators which will provide the optimum treatment with the least risk of injury.”

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>