Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Demonstrate Feasibility Of Preventing Malaria Parasite From Becoming Sexually Mature

04.06.2008
Discovery could help to control the spread of drug resistance

Researchers have demonstrated the possibility of preventing the human malaria parasite, Plasmodium falciparum, which is responsible for more than a million malaria deaths a year, from becoming sexually mature.

The discovery could have implications for controlling the spread of drug resistance, which is a major public health problem and which hinders the control of malaria.

The life cycle of Plasmodium falciparum is complex, and it is not yet known what triggers the production of parasite gametes or sex cells. These sexual forms of the parasite do not contribute to malaria symptoms, but are essential for transmission of malaria between humans via the bite of a mosquito.

A team based at the London School of Hygiene & Tropical Medicine, working with a colleague from the Wellcome Trust Sanger Institute in Cambridge, identified a parasite enzyme that is instrumental in triggering the emergence of mature gametes within the mosquito. Their findings are published today in the journal PLoS Biology.

Dr. David A Baker, a Reader in Parasite Molecular Biology at the London School of Hygiene & Tropical Medicine and senior author of the study, comments: ‘The enzyme we have discovered, a protein kinasea, is essential for the development of malaria parasite gametes. Working with genetically modified parasites, in combination with inhibitors of this enzyme, we have demonstrated that it is feasible to block the sexual stage of the life cycle of the malaria parasite.

He adds: ‘This has exciting implications in terms of improving how we go about tackling malaria. If a drug can be developed that targets this stage of the life cycle, and combined with a curative drug, it would be an important new approach for controlling malaria transmission and the spread of drug resistance’.

Gemma Howe | alfa
Further information:
http://www.lshtm.ac.uk

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>