Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid wound healing

30.05.2008
A new type of wound dressing made of silica gel fibers will soon help to heal difficult wounds caused by burns or diabetes. The dressing forms a supporting matrix for newly growing skin cells and is fully absorbed by the body during the healing process.

In Germany alone, about three million – mostly elderly – patients suffer from poorly healing large-area wounds caused by complaints such as diabetes, burns or bedsores. The wounds can be treated with conventional collagen dressings or polylactic acid dressings, but the success rate is not as good as it should be.

A new type of dressing made of silica gel fibers, developed by scientists at the Fraunhofer Institute for Silicate Research ISC in Würzburg, shall solve the problem. This novel dressing has many advantages: it is shape-stable, pH-neutral and 100 percent bioresorbable. Once applied it remains in the body, where it gradually degrades without leaving any residues.

What’s more, the fibre fleece provides the healthy cells around the edges of the wound with the structure they additionally need for a proper supply of growth-supporting nutrients. To prevent any infection, treatment of the wound must be absolutely sterile. “As only the outer bandage needs to be changed, the risk of contaminating the wound is low,” explains Dr. Jörn Probst of the ISC. And thanks to the supporting matrix for the cells, the chances of a scar-free natural closure of the wound are very good.

The fibers are produced by means of wet-chemical material synthesis, a sol-gel process in which a transparent, honey-like gel is produced from tetraethoxysilane (TEOS), ethanol and water in a multi-stage, acidically catalyzed synthesis process. The gel is processed in a spinning tower: “We press it through fine nozzles at constant temperatures and humidity levels,” explains Walther Glaubitt, the inventor of the silica gel fibers. “This produces fine endless threads which are collected on a traversing table and spun in a specific pattern to produce a roughly A4-sized multi-layer textile web.” The dressings are then cut, packed and sterilized. Dr. Jörn Probst and Dipl.-Ing. Walther Glaubitt will receive the Joseph von Fraunhofer Prize 2008 for developing the biocompatible dressing.

A partner to support the development and market the dressing has already been found: Bayer Innovation GmbH BIG, a wholly owned subsidiary of Bayer AG. “We anticipate that hospitals will start to use the silica gel wound dressing in 2011,” states Iwer Baecker, project manager at Bayer Innovation GmbH. And that is by no means the end of the story. The scientists plan to integrate active substances such as antibiotics or painkillers in the dressing to improve and accelerate the healing process.

Press Office | alfa
Further information:
http://www.fraunhofer.de/EN/bigimg/2008/rn05sfo3g.jsp
http://www.fraunhofer.de/EN/press/pi/2008/05/ResearchNews5s2008Topic3.jsp

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>