Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid wound healing

30.05.2008
A new type of wound dressing made of silica gel fibers will soon help to heal difficult wounds caused by burns or diabetes. The dressing forms a supporting matrix for newly growing skin cells and is fully absorbed by the body during the healing process.

In Germany alone, about three million – mostly elderly – patients suffer from poorly healing large-area wounds caused by complaints such as diabetes, burns or bedsores. The wounds can be treated with conventional collagen dressings or polylactic acid dressings, but the success rate is not as good as it should be.

A new type of dressing made of silica gel fibers, developed by scientists at the Fraunhofer Institute for Silicate Research ISC in Würzburg, shall solve the problem. This novel dressing has many advantages: it is shape-stable, pH-neutral and 100 percent bioresorbable. Once applied it remains in the body, where it gradually degrades without leaving any residues.

What’s more, the fibre fleece provides the healthy cells around the edges of the wound with the structure they additionally need for a proper supply of growth-supporting nutrients. To prevent any infection, treatment of the wound must be absolutely sterile. “As only the outer bandage needs to be changed, the risk of contaminating the wound is low,” explains Dr. Jörn Probst of the ISC. And thanks to the supporting matrix for the cells, the chances of a scar-free natural closure of the wound are very good.

The fibers are produced by means of wet-chemical material synthesis, a sol-gel process in which a transparent, honey-like gel is produced from tetraethoxysilane (TEOS), ethanol and water in a multi-stage, acidically catalyzed synthesis process. The gel is processed in a spinning tower: “We press it through fine nozzles at constant temperatures and humidity levels,” explains Walther Glaubitt, the inventor of the silica gel fibers. “This produces fine endless threads which are collected on a traversing table and spun in a specific pattern to produce a roughly A4-sized multi-layer textile web.” The dressings are then cut, packed and sterilized. Dr. Jörn Probst and Dipl.-Ing. Walther Glaubitt will receive the Joseph von Fraunhofer Prize 2008 for developing the biocompatible dressing.

A partner to support the development and market the dressing has already been found: Bayer Innovation GmbH BIG, a wholly owned subsidiary of Bayer AG. “We anticipate that hospitals will start to use the silica gel wound dressing in 2011,” states Iwer Baecker, project manager at Bayer Innovation GmbH. And that is by no means the end of the story. The scientists plan to integrate active substances such as antibiotics or painkillers in the dressing to improve and accelerate the healing process.

Press Office | alfa
Further information:
http://www.fraunhofer.de/EN/bigimg/2008/rn05sfo3g.jsp
http://www.fraunhofer.de/EN/press/pi/2008/05/ResearchNews5s2008Topic3.jsp

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>