Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New treatments for viral and other diseases by blocking genes

26.05.2008
The elusive goal of developing effective treatments for viral diseases such as AIDS and influenza has been brought closer by dramatic progress in the ability to interfere with viral genetic machinery. The stage was set for a coordinated European effort to accelerate research and stimulate development of new treatments against viral diseases at a recent research conference organised by the European Science Foundation (ESF).

It has been possible for many years to protect against some viral diseases such as polio in advance by vaccination, but there is still no effective treatment for patients once infection has occurred. Furthermore vaccination has not been possible so far against some diseases such as AIDS, and is only partially successful against some others, such as influenza.

However there is now the possibility of developing treatments potentially against all viral diseases through drugs based on the recently discovered phenomenon of RNA interference (RNAi), as was discussed at the ESF conference. The interference is performed by small RNA molecules known as siRNAs (small interfering RNAs).

RNA is produced when genes are expressed, normally as an intermediate step in the production of the end product, proteins. In some cases though expression stops with short RNA molecules, which in turn regulate the activity of other genes. Such molecules are called microRNAs, of which siRNAs can be considered a sub-category. It has already been shown that siRNAs occur naturally in plants as a defence mechanism against viral infection, but it is not known whether they occur in animals as Jens Kurreck pointed out, who organized the conference together with Ben Berkhout,. "An important question is whether RNAi is a natural cellular defense mechanism in mammals including humans," said Kurreck.

If it turns out that siRNAs do occur naturally in humans, researchers will attempt to stimulate or reinforce them to treat viral diseases more effectively than they normally do. If they do not occur naturally, then the line would be to create artificial siRNA molecules exploiting knowledge of how plants produce and apply them in their innate immune defences.

Although the basic mechanisms of RNA interference are now quite well understood, significant challenges remain in applying the technique in treatment of disease. A major issue lies in the ability of viruses to "escape" siRNA molecules by mutating so that they are no longer susceptible, according to Kurreck. These mutations prevent siRNA molecules from binding to relevant sites on the virus, so that it can reproduce without interference. One solution to prevent viruses escaping from RNAi in this way would be to combine several different treatments. "In analogy with the combination of several drugs in conventional virus therapy, various siRNAs against the virus can be combined to prevent viral escape," said Kurreck. The idea is that the virus might be able to evade one siRNA, but could not duck the combined effect of several.

Another challenge lies in ensuring that siRNAs are specific and inhibit the genetic machinery just of the target virus, without impairing vital cellular processes, with knock on effects for the immune system as a whole perhaps.

RNAi treatments are not just for the future - some are close to reality, particularly against respiratory diseases, since it is easier to deliver the drugs into the lung. "Two clinical trials to use RNAi against viruses are ongoing," said Kurreck. "There is a phase II trial with siRNAs against the Respiratory Syncitial Virus, and a phase I trial to treat patients infected with HIV." Phase I trials are usually conducted on small groups of people to assess safety, while in Phase II larger numbers of volunteers are recruited, typically around 300, to assess the effectiveness of the drug.

While the most immediate promise of RNAi is for treating viral diseases, it has equally exciting potential against other diseases such as macular degeneration, and some cancers. Here too real progress has been made. "Three clinical trials are ongoing to treat patients with age-related macular degeneration. Furthermore, one talk at the conferences was about the use of RNAi against cancer. A clinical trial for that was announced to begin at the end of 2008," said Kurreck.

Thomas Lau | alfa
Further information:
http://www.esf.org/index.php?id=2504

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>