Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New treatments for viral and other diseases by blocking genes

26.05.2008
The elusive goal of developing effective treatments for viral diseases such as AIDS and influenza has been brought closer by dramatic progress in the ability to interfere with viral genetic machinery. The stage was set for a coordinated European effort to accelerate research and stimulate development of new treatments against viral diseases at a recent research conference organised by the European Science Foundation (ESF).

It has been possible for many years to protect against some viral diseases such as polio in advance by vaccination, but there is still no effective treatment for patients once infection has occurred. Furthermore vaccination has not been possible so far against some diseases such as AIDS, and is only partially successful against some others, such as influenza.

However there is now the possibility of developing treatments potentially against all viral diseases through drugs based on the recently discovered phenomenon of RNA interference (RNAi), as was discussed at the ESF conference. The interference is performed by small RNA molecules known as siRNAs (small interfering RNAs).

RNA is produced when genes are expressed, normally as an intermediate step in the production of the end product, proteins. In some cases though expression stops with short RNA molecules, which in turn regulate the activity of other genes. Such molecules are called microRNAs, of which siRNAs can be considered a sub-category. It has already been shown that siRNAs occur naturally in plants as a defence mechanism against viral infection, but it is not known whether they occur in animals as Jens Kurreck pointed out, who organized the conference together with Ben Berkhout,. "An important question is whether RNAi is a natural cellular defense mechanism in mammals including humans," said Kurreck.

If it turns out that siRNAs do occur naturally in humans, researchers will attempt to stimulate or reinforce them to treat viral diseases more effectively than they normally do. If they do not occur naturally, then the line would be to create artificial siRNA molecules exploiting knowledge of how plants produce and apply them in their innate immune defences.

Although the basic mechanisms of RNA interference are now quite well understood, significant challenges remain in applying the technique in treatment of disease. A major issue lies in the ability of viruses to "escape" siRNA molecules by mutating so that they are no longer susceptible, according to Kurreck. These mutations prevent siRNA molecules from binding to relevant sites on the virus, so that it can reproduce without interference. One solution to prevent viruses escaping from RNAi in this way would be to combine several different treatments. "In analogy with the combination of several drugs in conventional virus therapy, various siRNAs against the virus can be combined to prevent viral escape," said Kurreck. The idea is that the virus might be able to evade one siRNA, but could not duck the combined effect of several.

Another challenge lies in ensuring that siRNAs are specific and inhibit the genetic machinery just of the target virus, without impairing vital cellular processes, with knock on effects for the immune system as a whole perhaps.

RNAi treatments are not just for the future - some are close to reality, particularly against respiratory diseases, since it is easier to deliver the drugs into the lung. "Two clinical trials to use RNAi against viruses are ongoing," said Kurreck. "There is a phase II trial with siRNAs against the Respiratory Syncitial Virus, and a phase I trial to treat patients infected with HIV." Phase I trials are usually conducted on small groups of people to assess safety, while in Phase II larger numbers of volunteers are recruited, typically around 300, to assess the effectiveness of the drug.

While the most immediate promise of RNAi is for treating viral diseases, it has equally exciting potential against other diseases such as macular degeneration, and some cancers. Here too real progress has been made. "Three clinical trials are ongoing to treat patients with age-related macular degeneration. Furthermore, one talk at the conferences was about the use of RNAi against cancer. A clinical trial for that was announced to begin at the end of 2008," said Kurreck.

Thomas Lau | alfa
Further information:
http://www.esf.org/index.php?id=2504

More articles from Health and Medicine:

nachricht Spanish scientists create a 3-D bioprinter to print human skin
24.01.2017 | Carlos III University of Madrid

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>