Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking influenza's every movement

21.05.2008
It’s the case of the missing flu virus. When the flu isn’t making people sick, it seems to just vanish. Yet, every year, everywhere on Earth, it reappears in the appropriate season and starts its attack. So where does it go when it disappears? Does it hibernate, lying dormant in a few people and preparing for its next onslaught? Does it bounce around from the Northern hemisphere to the Southern hemisphere and back, following the seasons?

Neither, it turns out. The virus’s breeding grounds are in Asia, a crew of virus-hunters has found, and it then teems out to take over the world anew each year. New varieties almost always evolve in Asia and then hitch a ride with travelers, spreading to Europe, Australia and North America and finally to South America, where they die away.

The work may make the flu vaccine even better than it already is. Because the flu virus is constantly evolving, scientists meet at the World Health Organization twice a year to decide whether to update the vaccine. Their job is made harder because they have to decide on a formulation a year in advance of when the flu will actually hit, to allow time for the vaccine to be manufactured and administered. So they have to predict which of the strains of flu virus are going to be causing the most disease a year down the line.

“In order to try to predict how flu viruses might evolve, we have to understand how they’re moving around the world and where they’re evolving,” says Derek Smith, now of the University of Cambridge and formerly of the Santa Fe Institute, corresponding author of the research. Asia, the study suggests, is the best place to look for up-and-coming strains.

The team published its findings April 18 in Science (http://www.sciencemag.org/cgi/content/full/320/5874/340).

The team traced the virus’s steps by studying 13,000 flu samples from around the world. The World Health Organization Global Influenza Surveillance Network collected this data between 2002 and 2007, keeping track of when and where different strains of the virus popped up. They analyzed the shape differences between the proteins each virus uses to bind to human cells, along with the genetic makeup of each virus.

The team used this information to create an “antigenic map” which visually shows the relationships between all the different viruses. This map allowed them to determine the migration patterns of the virus around the world.

The work was funded by an NIH Director’s Pioneer Award (http://nihroadmap.nih.gov/pioneer) to Smith given for highly innovative research that has the potential for big impacts.

The roots of the project extend all the way back to when Smith was a graduate fellow at the Santa Fe Institute doing a PhD with Stephanie Forrest and Alan Perelson. He later began collaborating with Alan Lapedes, Robert Farber, and Terry Jones, all of whom were also affiliated with the Santa Fe Institute, to develop the methods and software to build antigenic maps.

“This work is highly multidisciplinary, with epidemiologists, computer scientists, computational biologists, mathematicians, virologists, immunologists, geneticists, veterinarians, and MDs,” Smith says. “It was made possible by collaborations with people from all of these disciplines. The Santa Fe Institute is one of the few places that could have gestated such work and I am immensely grateful for the 5 years I spent at SFI.”

Derek Smith | EurekAlert!
Further information:
http://www.zoo.cam.ac.uk
http://www.sciencemag.org/cgi/content/full/320/5874/310

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>