Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New biosensor could save lives by giving faster medical analysis

03.07.2002


The biosensor
© EPSRC


Every day accident and emergency units have to treat patients who have taken some sort of drug overdose. To give treatment doctors need to know what the patient has taken. The circumstances can make often this difficult to ascertain quickly.

Researchers are developing a new kind of biosensor, which can determine in minutes if a patient’s blood contains a particular compound, for example paracetamol. Currently this type of examination needs to be carried out in a laboratory, which is expensive and time consuming.

The research is being carried out by Dr Sub Reddy’s team at the University of Surrey with funding from the Swindon based Engineering and Physical Sciences Research Council.



The sensor system can return a response in less than 10 minutes compared to the 2 – 3 hours required by a routine laboratory, depending on their workload. “Our sensor is portable and will be easy to use even by unskilled staff,” says Dr. Reddy. “Ideally, the overdose sensor may be located in the ambulance so that a result is available when the patient arrives at hospital.” The paracetamol sensor is the pilot to the development of an array of overdose sensors, which will test for alcohol and anti-depressants as well.

The capabilities of the biosensor extend far beyond helping patients who have taken a drug overdose. “We have successfully used the system to detect glucose,” says Dr Reddy. The team is also investigating the detection of creatinine, a product in the body, which is an indicator of kidney dysfunction.

The heart of the biosensor consists of a disc-shaped quartz crystal, around a centimetre in diameter and 0.2 mm thick. “When an alternating electric field is applied the crystal vibrates from side to side, like a nano-scale earthquake,” says Dr Reddy. “It shakes ten million times a second with an amplitude of a fraction of a nanometre.” The crystal can continue to oscillate even when immersed in a liquid. Anything which then sticks to the crystal surface or which affects the viscosity or elasticity of any attached film at the surface will affect the frequency at which the crystal vibrates.

The concept of the sensor is to have a small reaction chamber above the surface of the crystal. When a sample – blood, say – is placed in the chamber a series of carefully designed chemical reactions can be made to occur which result in the molecule of interest – for example cholesterol – contributing to the formation of a solid product. The product then attaches to the surface of the crystal, affecting the frequency of its oscillation.

Because the chemical reaction can be made to be highly specific to the molecule of interest so that only one solid product is formed, other substances in the sample will not interfere with the process or provide spurious readings.

Dr. Reddy explained how the biosensor has been used to detect glucose. “Here you add the sample to the reaction mixture. An enzyme oxidises the glucose to form hydrogen peroxide. This in turn is acted upon by a second enzyme and reacts with other ingredients in the mixture to form a water repelling molecule, which comes out of solution and can be made to attach to the quartz. This causes a change in the oscillation frequency which can be correlated with the quantity of product, which can in turn be related to the amount of glucose originally present in the sample.”

Dr Reddy believes that his team has demonstrated the feasibility of the concept of using a quartz crystal sensor in this way. “We have shown that the system has excellent sensitivity. We are getting extremely large signals.”

The researchers are now looking into ways of refining the system, by using membranes above the surface, which are selective for specific types of molecule, for example. This would ‘filter out’ any potentially contaminating species to provide a much cleaner and unambiguous reading. “We are building up a portfolio of detection strategies for compounds of interest and we are now reaching the stage where we are looking for industrial collaborators. We are also applying this viscoelastic sensor to lab-on-a-chip type technologies, as well as integrating it with synthetic polymer films capable of molecular recognition,” says Dr Reddy.

Jane Reck | alfa

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>