Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New biosensor could save lives by giving faster medical analysis


The biosensor

Every day accident and emergency units have to treat patients who have taken some sort of drug overdose. To give treatment doctors need to know what the patient has taken. The circumstances can make often this difficult to ascertain quickly.

Researchers are developing a new kind of biosensor, which can determine in minutes if a patient’s blood contains a particular compound, for example paracetamol. Currently this type of examination needs to be carried out in a laboratory, which is expensive and time consuming.

The research is being carried out by Dr Sub Reddy’s team at the University of Surrey with funding from the Swindon based Engineering and Physical Sciences Research Council.

The sensor system can return a response in less than 10 minutes compared to the 2 – 3 hours required by a routine laboratory, depending on their workload. “Our sensor is portable and will be easy to use even by unskilled staff,” says Dr. Reddy. “Ideally, the overdose sensor may be located in the ambulance so that a result is available when the patient arrives at hospital.” The paracetamol sensor is the pilot to the development of an array of overdose sensors, which will test for alcohol and anti-depressants as well.

The capabilities of the biosensor extend far beyond helping patients who have taken a drug overdose. “We have successfully used the system to detect glucose,” says Dr Reddy. The team is also investigating the detection of creatinine, a product in the body, which is an indicator of kidney dysfunction.

The heart of the biosensor consists of a disc-shaped quartz crystal, around a centimetre in diameter and 0.2 mm thick. “When an alternating electric field is applied the crystal vibrates from side to side, like a nano-scale earthquake,” says Dr Reddy. “It shakes ten million times a second with an amplitude of a fraction of a nanometre.” The crystal can continue to oscillate even when immersed in a liquid. Anything which then sticks to the crystal surface or which affects the viscosity or elasticity of any attached film at the surface will affect the frequency at which the crystal vibrates.

The concept of the sensor is to have a small reaction chamber above the surface of the crystal. When a sample – blood, say – is placed in the chamber a series of carefully designed chemical reactions can be made to occur which result in the molecule of interest – for example cholesterol – contributing to the formation of a solid product. The product then attaches to the surface of the crystal, affecting the frequency of its oscillation.

Because the chemical reaction can be made to be highly specific to the molecule of interest so that only one solid product is formed, other substances in the sample will not interfere with the process or provide spurious readings.

Dr. Reddy explained how the biosensor has been used to detect glucose. “Here you add the sample to the reaction mixture. An enzyme oxidises the glucose to form hydrogen peroxide. This in turn is acted upon by a second enzyme and reacts with other ingredients in the mixture to form a water repelling molecule, which comes out of solution and can be made to attach to the quartz. This causes a change in the oscillation frequency which can be correlated with the quantity of product, which can in turn be related to the amount of glucose originally present in the sample.”

Dr Reddy believes that his team has demonstrated the feasibility of the concept of using a quartz crystal sensor in this way. “We have shown that the system has excellent sensitivity. We are getting extremely large signals.”

The researchers are now looking into ways of refining the system, by using membranes above the surface, which are selective for specific types of molecule, for example. This would ‘filter out’ any potentially contaminating species to provide a much cleaner and unambiguous reading. “We are building up a portfolio of detection strategies for compounds of interest and we are now reaching the stage where we are looking for industrial collaborators. We are also applying this viscoelastic sensor to lab-on-a-chip type technologies, as well as integrating it with synthetic polymer films capable of molecular recognition,” says Dr Reddy.

Jane Reck | alfa

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>