Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New biosensor could save lives by giving faster medical analysis

03.07.2002


The biosensor
© EPSRC


Every day accident and emergency units have to treat patients who have taken some sort of drug overdose. To give treatment doctors need to know what the patient has taken. The circumstances can make often this difficult to ascertain quickly.

Researchers are developing a new kind of biosensor, which can determine in minutes if a patient’s blood contains a particular compound, for example paracetamol. Currently this type of examination needs to be carried out in a laboratory, which is expensive and time consuming.

The research is being carried out by Dr Sub Reddy’s team at the University of Surrey with funding from the Swindon based Engineering and Physical Sciences Research Council.



The sensor system can return a response in less than 10 minutes compared to the 2 – 3 hours required by a routine laboratory, depending on their workload. “Our sensor is portable and will be easy to use even by unskilled staff,” says Dr. Reddy. “Ideally, the overdose sensor may be located in the ambulance so that a result is available when the patient arrives at hospital.” The paracetamol sensor is the pilot to the development of an array of overdose sensors, which will test for alcohol and anti-depressants as well.

The capabilities of the biosensor extend far beyond helping patients who have taken a drug overdose. “We have successfully used the system to detect glucose,” says Dr Reddy. The team is also investigating the detection of creatinine, a product in the body, which is an indicator of kidney dysfunction.

The heart of the biosensor consists of a disc-shaped quartz crystal, around a centimetre in diameter and 0.2 mm thick. “When an alternating electric field is applied the crystal vibrates from side to side, like a nano-scale earthquake,” says Dr Reddy. “It shakes ten million times a second with an amplitude of a fraction of a nanometre.” The crystal can continue to oscillate even when immersed in a liquid. Anything which then sticks to the crystal surface or which affects the viscosity or elasticity of any attached film at the surface will affect the frequency at which the crystal vibrates.

The concept of the sensor is to have a small reaction chamber above the surface of the crystal. When a sample – blood, say – is placed in the chamber a series of carefully designed chemical reactions can be made to occur which result in the molecule of interest – for example cholesterol – contributing to the formation of a solid product. The product then attaches to the surface of the crystal, affecting the frequency of its oscillation.

Because the chemical reaction can be made to be highly specific to the molecule of interest so that only one solid product is formed, other substances in the sample will not interfere with the process or provide spurious readings.

Dr. Reddy explained how the biosensor has been used to detect glucose. “Here you add the sample to the reaction mixture. An enzyme oxidises the glucose to form hydrogen peroxide. This in turn is acted upon by a second enzyme and reacts with other ingredients in the mixture to form a water repelling molecule, which comes out of solution and can be made to attach to the quartz. This causes a change in the oscillation frequency which can be correlated with the quantity of product, which can in turn be related to the amount of glucose originally present in the sample.”

Dr Reddy believes that his team has demonstrated the feasibility of the concept of using a quartz crystal sensor in this way. “We have shown that the system has excellent sensitivity. We are getting extremely large signals.”

The researchers are now looking into ways of refining the system, by using membranes above the surface, which are selective for specific types of molecule, for example. This would ‘filter out’ any potentially contaminating species to provide a much cleaner and unambiguous reading. “We are building up a portfolio of detection strategies for compounds of interest and we are now reaching the stage where we are looking for industrial collaborators. We are also applying this viscoelastic sensor to lab-on-a-chip type technologies, as well as integrating it with synthetic polymer films capable of molecular recognition,” says Dr Reddy.

Jane Reck | alfa

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>