Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New biosensor could save lives by giving faster medical analysis

03.07.2002


The biosensor
© EPSRC


Every day accident and emergency units have to treat patients who have taken some sort of drug overdose. To give treatment doctors need to know what the patient has taken. The circumstances can make often this difficult to ascertain quickly.

Researchers are developing a new kind of biosensor, which can determine in minutes if a patient’s blood contains a particular compound, for example paracetamol. Currently this type of examination needs to be carried out in a laboratory, which is expensive and time consuming.

The research is being carried out by Dr Sub Reddy’s team at the University of Surrey with funding from the Swindon based Engineering and Physical Sciences Research Council.



The sensor system can return a response in less than 10 minutes compared to the 2 – 3 hours required by a routine laboratory, depending on their workload. “Our sensor is portable and will be easy to use even by unskilled staff,” says Dr. Reddy. “Ideally, the overdose sensor may be located in the ambulance so that a result is available when the patient arrives at hospital.” The paracetamol sensor is the pilot to the development of an array of overdose sensors, which will test for alcohol and anti-depressants as well.

The capabilities of the biosensor extend far beyond helping patients who have taken a drug overdose. “We have successfully used the system to detect glucose,” says Dr Reddy. The team is also investigating the detection of creatinine, a product in the body, which is an indicator of kidney dysfunction.

The heart of the biosensor consists of a disc-shaped quartz crystal, around a centimetre in diameter and 0.2 mm thick. “When an alternating electric field is applied the crystal vibrates from side to side, like a nano-scale earthquake,” says Dr Reddy. “It shakes ten million times a second with an amplitude of a fraction of a nanometre.” The crystal can continue to oscillate even when immersed in a liquid. Anything which then sticks to the crystal surface or which affects the viscosity or elasticity of any attached film at the surface will affect the frequency at which the crystal vibrates.

The concept of the sensor is to have a small reaction chamber above the surface of the crystal. When a sample – blood, say – is placed in the chamber a series of carefully designed chemical reactions can be made to occur which result in the molecule of interest – for example cholesterol – contributing to the formation of a solid product. The product then attaches to the surface of the crystal, affecting the frequency of its oscillation.

Because the chemical reaction can be made to be highly specific to the molecule of interest so that only one solid product is formed, other substances in the sample will not interfere with the process or provide spurious readings.

Dr. Reddy explained how the biosensor has been used to detect glucose. “Here you add the sample to the reaction mixture. An enzyme oxidises the glucose to form hydrogen peroxide. This in turn is acted upon by a second enzyme and reacts with other ingredients in the mixture to form a water repelling molecule, which comes out of solution and can be made to attach to the quartz. This causes a change in the oscillation frequency which can be correlated with the quantity of product, which can in turn be related to the amount of glucose originally present in the sample.”

Dr Reddy believes that his team has demonstrated the feasibility of the concept of using a quartz crystal sensor in this way. “We have shown that the system has excellent sensitivity. We are getting extremely large signals.”

The researchers are now looking into ways of refining the system, by using membranes above the surface, which are selective for specific types of molecule, for example. This would ‘filter out’ any potentially contaminating species to provide a much cleaner and unambiguous reading. “We are building up a portfolio of detection strategies for compounds of interest and we are now reaching the stage where we are looking for industrial collaborators. We are also applying this viscoelastic sensor to lab-on-a-chip type technologies, as well as integrating it with synthetic polymer films capable of molecular recognition,” says Dr Reddy.

Jane Reck | alfa

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>