Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neural cell transplants may help those with Parkinson's disease

20.05.2008
The current issue of CELL TRANSPLANTATION (Vol. 17:4) features a number of publications by researchers seeking new ways to treat Parkinson’s disease (PD), a neurological disease characterized by muscle rigidity, tremor and slowed physical movements related to insufficient levels of dopamine (DA) in the basal ganglia of the brain, by using primate models to examine the potential therapy role of transplanted cells.

One research team looked at the ability of human neural progenitor cells (hNPCs) as a potential therapy when hNPCs were engineered to produce glial derived neurotrophic factor (GDNF) in the brain following hNPC transplants.

“Localized delivery is essential for aiming therapeutic molecules when treating neurodegenerative disorders,” said Maria Emborg, PhD, of the University of Wisconsin-Madison. “There are currently a number of clinical trials underway using direct gene therapy approaches to deliver potent trophic factors throughout the basal ganglia.”

Emborg and colleagues report that hNPCs genetically modified to over-express GDNF were able to survive transplant and produced GDNF for three months, and that functional recovery in test animals increased while no obvious negative side effects from the transplant procedure were observed.

Contact: emborg@primate.wisc.edu

An international team of researchers from the University of Kentucky Medical Center and the Shandong Provincial Hospital, Shangdong, PR of China, are studying the neurorestorative effects of the exogenous protein neurturin (NTN), another member of the GDNF family. They found that the protein may have beneficial effects on PD as their results showed some restorative influences after cell transplantation.

“Tissue distribution of trophic factor is a critical variable to achieve optimal effects on dopamine function and promote behavioral improvement,” said corresponding author Richard Grondin, PhD of the University of Kentucky. “The volume of GDNF distribution in the trophic factor recipients significantly correlated with motor function improvements. Tissue distribution may not have been optimal with NTN, but the overall effects of NTN on motor and dopaminergic function suggest potential therapeutic uses.”

Contact: rcgron0@uky.edu

According to Zhiming Zhang, M.D. corresponding author and colleagues from the University of Kentucky College of Medicine, the need is great for longitudinal noninvasive, highly sensitive imaging techniques to monitor treatment for PD. Their study reports on attempts at monitoring GDNF-induced functional changes in the basal ganglia using pharmacological MRI (phMRI) to measure response to dopamine. The aim is to eventually be able to visualize changes in the living brains of PD patients.

“Our hypothesis was that phMRI techniques combined with selective dopaminergic agents could monitor PD treatment,” said Zhang. “GDNF has been proven to halt or reverse progressive degeneration of the nigrostriatal DA system in models of PD. The ability to reliably monitor therapeutic effects would provide valuable information in assessing the progression of PD.”

In their study, Zhang, et al found that phMRI “showed its potential” by detecting functional changes before and after infusion with GDNF. These changes were also accompanied by improvements in motor function.

Contact: zzhan01@uky.edu

Transplantation of dopamine neurons as therapy for PD has been tested recently. Researchers sought to answer questions about where to place the transplanted neurons to gain the best environment for the optimal effect. One research team found that grafted dopamine neurons could “extend neurites toward a desired target over several millimeters through the brain in animal models…” which favors the prospect of “circuit reconstruction from grafted neurons placed at appropriate locations in the neural circuitry."

According to corresponding author John Sladek, PhD of the University of Colorado School of Medicine, there have always been questions about the regenerative capacity of mammalian neurons. One point at issue was the need to provide a “neuronal microenvironment that would be more conducive for regulated neurological control of DA production and release by the grafted neurons,” said Sladek.

Test results suggested that substantia nigra grafts could send targeted DA neurons to a location where they could survive and extend neurites over longer distances.

“Survival of the grafts and extension of the axons is of importance because it positions the DA neurites to grow in a trajectory toward the striatum, using the striatal grafts as an attractant,” concluded Sladek.

Contact: john.sladek@uchsc.edu

“Taking these four papers together we can see that primate studies are helping to elucidate the likelihood of favorable outcomes following stem cell transplantation with respect to route of administration, possible modes of action and the ability to track the effects.” said Jeffrey Kordower, PhD of the Rush University Medical Center, Chicago and guest editor of this special meeting issue of CELL TRANSPLANTATION.

Dr. Paul Sanberg | EurekAlert!
Further information:
http://www.health.usf.edu

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>