Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Traditional herbal medicine kills pancreatic cancer cells

20.05.2008
An herb used in traditional medicine by many Middle Eastern countries may help in the fight against pancreatic cancer, one of the most difficult cancers to treat.

Researchers at the Kimmel Cancer at Jefferson in Philadelphia have found that thymoquinone, an extract of nigella sativa seed oil, blocked pancreatic cancer cell growth and killed the cells by enhancing the process of programmed cell death.

While the studies are in the early stages, the findings suggest that thymoquinone could eventually have some use as a preventative strategy in patients who have gone through surgery and chemotherapy or in individuals who are at a high risk of developing cancer.

According to Hwyda Arafat, M.D., Ph.D., associate professor of Surgery at Jefferson Medical College of Thomas Jefferson University, nigella sativa helps treat a broad array of diseases, including some immune and inflammatory disorders. Previous studies also have shown anticancer activity in prostate and colon cancers, as well as antioxidant and anti-inflammatory effects.

Using a human pancreatic cancer cell line, she and her team found that adding thymoquinone killed approximately 80 percent of the cancer cells. They demonstrated that thymoquinone triggered programmed cell death in the cells, and that a number of important genes, including p53, Bax, bcl-2 and p21, were affected. The researchers found that expression of p53, a tumor suppressor gene, and Bax, a gene that promotes programmed cell death, was increased, while bcl-2, which blocks such cell death, was decreased. The p21 gene, which is involved in the regulation of different phases of the cell cycle, was substantially increased. She presents her findings May 18 at the Digestive Disease Week in San Diego.

Dr. Arafat and her co-workers also found that thymoquinone caused “epigenetic” changes in pancreatic cancer cells, modifying the cells’ DNA. She explains that these changes involve adding acetyl groups to the DNA structure, specifically to blocks of proteins called histones. This “acetylation” process can be important for genes to be read and translated into proteins. In this case, it could involve the genes that are key to initiating programmed cell death.

“We looked at the status of the histones and found surprisingly that thymoquinone increased the acetylation process,” Dr. Arafat says. “We never anticipated that.”

At the same time, adding thymoquinone to pancreatic cancer cells reduced the production and activity of enzymes called histone deacetylases (HDACs), which remove the acetyl groups from the histone proteins, halting the gene transcription process. Dr. Arafat notes that HDAC inhibitors are a “hot” new class of drugs that interfere with the function of histone deacetylases, and is being studied as a treatment for cancer and neurodegenerative diseases. Finding that thymoquinone functions as an HDAC inhibitor, she says, “was very remarkable and really exciting.”

Pancreatic cancer, the fourth-leading cause of cancer death in this country, takes some 34,000 lives a year. The disease frequently is detected after it has spread and only 4 percent of individuals with pancreatic cancer live for five years after diagnosis.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>