Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New scanner holds promise of better breast cancer detection

03.07.2002


A new high-resolution nuclear medicine imaging scanner specifically designed for breast exams has the potential to increase physicians’ ability to determine if a woman has breast cancer, and may be particularly useful for women with dense breasts. The results of this early study were reported in the July 2002 issue of the Journal of Nuclear Medicine, published by the Society of Nuclear Medicine.



When compared with scintimammographic images taken on a standard gamma camera, the new camera, called a high-resolution breast-specific gamma camera (HRBGC), was able to detect more (78%) malignancies than a standard gamma camera (68%). The sensitivity of breast cancer detected in lesions <1cm increased from 46.7% to 66.7% using the new camera. It also detected 3 lesions that were not visible with mammography; one of which did not appear on the standard camera. All three were in areas of dense breast tissue.

Scintimammography is a technique in which women are injected with the radiotracer 99mTc-sestamibi that is absorbed more by malignant tissue than normal tissue, resulting in an image that can be used to locate cancerous areas. Scintimammography has been shown in studies to detect breast cancer better than traditional mammography. Standard gamma cameras have some significant drawbacks, including registration and resolution issues, and the fact that they cannot acquire multiple views, making it difficult detect lesions <1cm. This preliminary study utilized a prototype breast-specific gamma camera that was designed to address these problems.


Fifty women with a total of 58 lesions that were either palpable, or which had shown up on a mammogram or sonogram even though they couldn’t be felt, were included in the study. After injection with the radiopharmaceutical, the women received consecutive scans; one with the conventional gamma camera, and then one with the prototype camera. All the lesions were ultimately either surgically or needle biopsied, so that findings were pathologically confirmed. Of the lesions, 30 (52%) were benign, and 28 (48%) were malignant. The study authors suggested that since the second, high-resolution scan was undertaken outside the limits of the tracer’s activity, future studies with proper dose-to-scan time-scanning might show even better results.

"This new type of camera ultimately may offer physicians a practical way to include scintimammography, with its superior ability to detect cancer, in their clinical practice as an adjunct to mammography," stated study author Rachel Brem, MD.

A commentary that accompanied the article noted that while current mammography is very good at detecting breast abnormalities it only predicts 50% of the time whether the abnormality is actually breast cancer. Scintimammography and the breast-specific camera may overcome the problem of differentiating benign from malignant abnormalities in addition to locating otherwise undetected cancers.



High-Resolution Scintimammography: A Pilot Study was written by Rachel F. Brem, MD of the Breast Imaging and Intervention Center, George Washington University Medical Center, Washington, DC; Joelle M. Schoonjans, MD, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Institutions, Baltimore, MD; Douglas A. Kieper, BS and Stan Majewski, PhD, Thomas Jefferson National Accelerator Facility, Newport News, Virginia; Steven Goodman, MD, PhD, Department of Oncology, Johns Hopkins Institutions, Baltimore, MD; and Cahid Civelek, MD, Department of Radiology and Radiological Science, Johns Hopkins Institutions. This article was supported by a grant from Dilon Technologies, Inc., and by DuPont Pharma, Inc. Dr. Brem is a consultant to and has stock options in Dilon Technologies, Inc.

Copies of the article and images related to the study are available to media upon request to Karen Lubieniecki at Karenlub@aol.com; (703) 683-0357. Copies of this and past issues of The Journal of Nuclear Medicine are available online at jnm.snmjournals.org. Print copies can be obtained at $15 per copy by contacting the SNM Service Center, Society of Nuclear Medicine, 1850 Samuel Morse Drive, Reston, VA 20190-5315; phone: (703) 326-1186; fax: (703) 708-9015; e-mail: servicecenter@snm.org. A yearly subscription to the journal is $170. A journal subscription is a member benefit of the Society of Nuclear Medicine.


Karen Lubieniecki | EurekAlert!

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>