Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New scanner holds promise of better breast cancer detection


A new high-resolution nuclear medicine imaging scanner specifically designed for breast exams has the potential to increase physicians’ ability to determine if a woman has breast cancer, and may be particularly useful for women with dense breasts. The results of this early study were reported in the July 2002 issue of the Journal of Nuclear Medicine, published by the Society of Nuclear Medicine.

When compared with scintimammographic images taken on a standard gamma camera, the new camera, called a high-resolution breast-specific gamma camera (HRBGC), was able to detect more (78%) malignancies than a standard gamma camera (68%). The sensitivity of breast cancer detected in lesions <1cm increased from 46.7% to 66.7% using the new camera. It also detected 3 lesions that were not visible with mammography; one of which did not appear on the standard camera. All three were in areas of dense breast tissue.

Scintimammography is a technique in which women are injected with the radiotracer 99mTc-sestamibi that is absorbed more by malignant tissue than normal tissue, resulting in an image that can be used to locate cancerous areas. Scintimammography has been shown in studies to detect breast cancer better than traditional mammography. Standard gamma cameras have some significant drawbacks, including registration and resolution issues, and the fact that they cannot acquire multiple views, making it difficult detect lesions <1cm. This preliminary study utilized a prototype breast-specific gamma camera that was designed to address these problems.

Fifty women with a total of 58 lesions that were either palpable, or which had shown up on a mammogram or sonogram even though they couldn’t be felt, were included in the study. After injection with the radiopharmaceutical, the women received consecutive scans; one with the conventional gamma camera, and then one with the prototype camera. All the lesions were ultimately either surgically or needle biopsied, so that findings were pathologically confirmed. Of the lesions, 30 (52%) were benign, and 28 (48%) were malignant. The study authors suggested that since the second, high-resolution scan was undertaken outside the limits of the tracer’s activity, future studies with proper dose-to-scan time-scanning might show even better results.

"This new type of camera ultimately may offer physicians a practical way to include scintimammography, with its superior ability to detect cancer, in their clinical practice as an adjunct to mammography," stated study author Rachel Brem, MD.

A commentary that accompanied the article noted that while current mammography is very good at detecting breast abnormalities it only predicts 50% of the time whether the abnormality is actually breast cancer. Scintimammography and the breast-specific camera may overcome the problem of differentiating benign from malignant abnormalities in addition to locating otherwise undetected cancers.

High-Resolution Scintimammography: A Pilot Study was written by Rachel F. Brem, MD of the Breast Imaging and Intervention Center, George Washington University Medical Center, Washington, DC; Joelle M. Schoonjans, MD, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Institutions, Baltimore, MD; Douglas A. Kieper, BS and Stan Majewski, PhD, Thomas Jefferson National Accelerator Facility, Newport News, Virginia; Steven Goodman, MD, PhD, Department of Oncology, Johns Hopkins Institutions, Baltimore, MD; and Cahid Civelek, MD, Department of Radiology and Radiological Science, Johns Hopkins Institutions. This article was supported by a grant from Dilon Technologies, Inc., and by DuPont Pharma, Inc. Dr. Brem is a consultant to and has stock options in Dilon Technologies, Inc.

Copies of the article and images related to the study are available to media upon request to Karen Lubieniecki at; (703) 683-0357. Copies of this and past issues of The Journal of Nuclear Medicine are available online at Print copies can be obtained at $15 per copy by contacting the SNM Service Center, Society of Nuclear Medicine, 1850 Samuel Morse Drive, Reston, VA 20190-5315; phone: (703) 326-1186; fax: (703) 708-9015; e-mail: A yearly subscription to the journal is $170. A journal subscription is a member benefit of the Society of Nuclear Medicine.

Karen Lubieniecki | EurekAlert!

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>