Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method of turning off viruses may help control HIV infection, says Jefferson scientist

03.07.2002


A natural method of disarming some types of viruses may enable scientists to someday treat infections with HIV, the AIDS virus, according to a virologist at Jefferson Medical College.



Taking the lead from the common fruit fly, yeast and worms, scientists have recently shown that it may be possible to use small pieces of genetic material called short interfering RNAs (siRNAs) to inhibit HIV from making more copies of itself.

The process, called RNA interference (RNAi), was first discovered in 1998. It is so novel, says virologist Roger J. Pomerantz, M.D., professor of medicine, biochemistry and molecular pharmacology and chief of the division of infectious diseases at Jefferson Medical College of Thomas Jefferson University in Philadelphia, that scientists only now are beginning to understand its potential to treat disease. "What’s so exciting for HIV therapy is that it may be a potent way of specifically inhibiting the virus," says Dr. Pomerantz, whose commentary accompanies a paper on the topic in the July 2002 issue of Nature Medicine.


"Does it [RNAi] work in mammals? That would be the Holy Grail," says Dr. Pomerantz, who is also director of the Center for Human Virology at Jefferson Medical College. "Researchers are showing it in mouse cells and now a team has demonstrated it in human cells."

So-called "gene silencing" isn’t new. According to Dr. Pomerantz, scientists have known for several decades that organisms can and do shut off the expression of certain genes. But, he says, no one until recently has been able to show this was occurring during the gene replication process. Scientists showed that they could stop a gene from replicating by degrading the gene’s RNA and making its protein product.

Researchers learned several years ago that certain organisms - some worms, fruit flies, yeast and even plants - use a type of RNA called double-stranded RNA (dsRNA) to shut off genes. Dr. Pomerantz explains that dsRNA is cut up by an enzyme, "Dicer," into smaller siRNAs, which in turn attach to RNA being made by the cell, rendering it useless.

Scientists showed recently that RNAi could work in mammalian cells. In the current issue of Nature Medicine, researchers at Massachusetts Institute of Technology reported a series of experiments demonstrating how siRNAs might be used to fight HIV, which is an RNA virus. They used siRNAs in two ways. They showed they could silence both cellular genes necessary for HIV infection and also use siRNAs to quiet an HIV gene itself.

Dr. Pomerantz points out that the MIT report is an important step in understanding the process. "This [MIT work] is a proof of concept," he says. "The MIT team showed RNAi could work for HIV.

"Now, we need to figure out how it works and how long it lasts," he says. "Does it spread between cells? How robust is it in inhibiting HIV? Can we use it against virtually any RNA virus?" RNAi may also be useful against cancer-causing oncogenes, he adds.

"I think it [this technology] is going to explode," Dr. Pomerantz says. "It has the potential to lead to novel forms of drugs for many diseases, but there’s a lot of science to be done first to catch up to these observations."



Contact: Steve Benowitz or Phyllis Fisher, 215-955-6300. After Hours: 215-955-6060

Steve Benowitz | EurekAlert!

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>