Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New method of turning off viruses may help control HIV infection, says Jefferson scientist


A natural method of disarming some types of viruses may enable scientists to someday treat infections with HIV, the AIDS virus, according to a virologist at Jefferson Medical College.

Taking the lead from the common fruit fly, yeast and worms, scientists have recently shown that it may be possible to use small pieces of genetic material called short interfering RNAs (siRNAs) to inhibit HIV from making more copies of itself.

The process, called RNA interference (RNAi), was first discovered in 1998. It is so novel, says virologist Roger J. Pomerantz, M.D., professor of medicine, biochemistry and molecular pharmacology and chief of the division of infectious diseases at Jefferson Medical College of Thomas Jefferson University in Philadelphia, that scientists only now are beginning to understand its potential to treat disease. "What’s so exciting for HIV therapy is that it may be a potent way of specifically inhibiting the virus," says Dr. Pomerantz, whose commentary accompanies a paper on the topic in the July 2002 issue of Nature Medicine.

"Does it [RNAi] work in mammals? That would be the Holy Grail," says Dr. Pomerantz, who is also director of the Center for Human Virology at Jefferson Medical College. "Researchers are showing it in mouse cells and now a team has demonstrated it in human cells."

So-called "gene silencing" isn’t new. According to Dr. Pomerantz, scientists have known for several decades that organisms can and do shut off the expression of certain genes. But, he says, no one until recently has been able to show this was occurring during the gene replication process. Scientists showed that they could stop a gene from replicating by degrading the gene’s RNA and making its protein product.

Researchers learned several years ago that certain organisms - some worms, fruit flies, yeast and even plants - use a type of RNA called double-stranded RNA (dsRNA) to shut off genes. Dr. Pomerantz explains that dsRNA is cut up by an enzyme, "Dicer," into smaller siRNAs, which in turn attach to RNA being made by the cell, rendering it useless.

Scientists showed recently that RNAi could work in mammalian cells. In the current issue of Nature Medicine, researchers at Massachusetts Institute of Technology reported a series of experiments demonstrating how siRNAs might be used to fight HIV, which is an RNA virus. They used siRNAs in two ways. They showed they could silence both cellular genes necessary for HIV infection and also use siRNAs to quiet an HIV gene itself.

Dr. Pomerantz points out that the MIT report is an important step in understanding the process. "This [MIT work] is a proof of concept," he says. "The MIT team showed RNAi could work for HIV.

"Now, we need to figure out how it works and how long it lasts," he says. "Does it spread between cells? How robust is it in inhibiting HIV? Can we use it against virtually any RNA virus?" RNAi may also be useful against cancer-causing oncogenes, he adds.

"I think it [this technology] is going to explode," Dr. Pomerantz says. "It has the potential to lead to novel forms of drugs for many diseases, but there’s a lot of science to be done first to catch up to these observations."

Contact: Steve Benowitz or Phyllis Fisher, 215-955-6300. After Hours: 215-955-6060

Steve Benowitz | EurekAlert!

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>