Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common diabetes drug causes arteries to spasm, endangering heart

02.07.2002


The oral medications most widely used to lower blood-sugar levels in patients with type 2 diabetes are likely to increase the risk of spasm of the coronary arteries, reports a University of Chicago-based research team in the July 15 issue of the Journal of Clinical Investigation. Constricted arteries increase blood pressure and decrease blood flow to the heart, causing chest pain and even sudden death, shows the study, which focused on mice with a genetic defect that duplicates the actions of these drugs.

Sulfonylurea drugs are the mainstay of therapy for non-insulin-dependent diabetes, which affects an estimated 15 million people in the United States. These drugs stimulate the beta cells of the pancreas to squeeze out more insulin and also make insulin more effective.

Since the early 1970s, however, several studies have suggested that sulfonylurea drugs may actually increase cardiovascular problems in diabetic patients. The link between these drugs and heart damage has been disputed, because it was not clear -- until now -- exactly how such medications increased cardiovascular risk. The new study demonstrates a direct link between the receptor for sulfonylurea drugs and coronary arterial spasm, heart damage and death.



"This study, even though it involved mice, argues that from now on we should think twice, or maybe more than twice, about using the sulfonylureas, particularly if other options are available," said Elizabeth McNally, M.D., Ph.D., a cardiologist at the University of Chicago and director of the study. She adds that "other options are always available."

The discovery grew out of a laboratory problem. In 1999, William Chutkow, an M.D.-Ph.D. student working in the lab of diabetes specialist Charles Burant at the University of Chicago (Burant is now at U. Michigan), engineered mice lacking the gene for a sulfonylurea receptor known as SUR2. Although these mice initially appeared normal, they tended to die suddenly. The diabetes researchers wondered why.

So they began working with McNally, a specialist in cardiovascular genetics. McNally fitted the gene-altered mice with portable heart monitors, which revealed that they had elevated blood pressure and frequent cardiac "episodes." About 50 times a day the mice had severe angina attacks, caused by spasms of their coronary arteries, which cut off the blood supply to the heart.

These repeated spasms, which lasted for several minutes, were often lethal. By the age of 30 weeks, 65 percent of male mice and 35 percent of females had died.

The spasms were caused by the missing receptor, the same one that is targeted by the sulfonylureas.

Sulfonylureas induce the pancreas to release insulin by blocking this receptor. Blocking the receptor inhibits a potassium channel on the cell surface. When this channel is closed, potassium ions build up in the cell, which eventually triggers the cell to open its calcium ion channels. Calcium flows in, which signals the cell to secrete insulin.

Unfortunately, a similar receptor exists on the smooth muscle cells that surround arteries, regulating flow through these vessels. The researchers found that mice without the receptor, had no functional potassium channels in their smooth muscle, leading to calcium influx and contraction of the smooth muscle cells that surround arteries.

Drugs that block calcium channels reduced the frequency of coronary episodes.

"We found that this receptor plays a pivotal role in the regulation of blood pressure and vascular tone," said McNally. "The absence of the smooth muscle potassium channels promotes episodes of vascular spasm. Since the sulfonyureas work the same way, effectively closing these channels, we believe that they can increase susceptibility to vasospasm and therefore present a significant risk to diabetic patients. Since diabetic patients are already facing an increased risk of cardiovasculr disease, this is a further insult to their vessels."

These gene-altered mice also provide an animal model of the disease known as Prinzmetal’s angina, which is caused by is coronary artery spasm. Unlike typical angina -- chest pain during exertion -- Prinzmetal’s nearly always occurs when a person is at rest.

"The good news," adds McNally, "is that this study provides us with a new way to study Prinzmetal’s angina and suggests a molecular target for new drugs to treat hypertension and vasospasm."

This research was supported by the National Institutes of Health, the American Heart Association and the Burroughs Wellcome Fund. Additonal researchers include William Chutkow and Matthew Wheeler of the University of Chicago; Jielin Pu, Tomoyuki and Jonathan Makielski of the University of Wisconsin; and Charles Burant of the University of Michigan.

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>