Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineer to spearhead research into cell metabolism and medical injuries

13.05.2008
A University of Leicester engineer has won a share of grants totalling over £1m to target lung injury and cancer.

In an unusual move, Dr. Declan Bates, a senior lecturer in the Department of Engineering at the University of Leicester, is co-recipient of £1,068,000 in the form of just two research grants: one from the Engineering and Physical Sciences Research Council (EPSRC) and the other from the Biotechnology and Biological Sciences Research Council (BBSRC).

The grants are shared between academics at Leicester and Nottingham and Aberdeen.

The first will be used to examine how lung injury can be prevented in patients who are on ventilators; the second, to investigate a potential target for future cancer treatments.

“These may seem worlds apart -especially for an engineer, but they’re united by a common factor – feedback control theory – which of course is a science in its own right,” said Dr Bates.

He added: “It might seem odd that a life-support machine can cause injury, but this is actually not uncommon. The majority of critically ill patients in Intensive Therapy Units (ITU) spend some time with their lungs ventilated using a mechanical ventilator or “life-support machine”. However, mechanical ventilation exposes patients’ lungs to potentially damaging positive pressures, and as a result, ventilator-associated lung injury (VALI) is a common and significant occurrence. Prolonged stays in the ITU may be generated, pneumonia may be precipitated and lifelong lung scarring may result. The scale of the problem is such that 2.9% of people receiving mechanical ventilation suffer VALI each year, which represents several thousand individuals in the UK each year.

Dr Bates will be looking at these problems in terms of feedback control in order to find ways to optimally adjust the ventilators to allow them to do their job better while minimising injury. This is highly complicated, and previous attempts have had to rely on ‘idealised’ subjects. Dr Bates will perform population modelling, making his findings applicable to real patients.

With the second grant, Dr Bates will investigate how biochemical pathways are regulated in human cells, which could lead to improved anti-cancer drugs.

A class of molecules called polyamines are crucial to the health of the cells in your body. Cells normally regulate polyamine levels very tightly as changes in their concentrations can cause the cells to die, become cancerous, or give rise to other diseases.

Understanding how various biological control processes interact to keep everything on an even keel is a tall order, and one that can only be addressed with the new field of Systems Biology.

Dr Bates will draw on the expertise of biologists and control engineers to mathematically model the pathways involved. This will teach us how the control systems operate and how cells stay healthy, but should ultimately lead to therapies specific to the problems that arise when they go wrong.

Dr. Bates says:

“This interdisciplinary approach is required as a direct response to the complexity of the mechanisms being studied, which renders standard biological approaches inadequate.”

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>