Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Not all fat created equal

08.05.2008
Joslin researchers find certain body fat reduces insulin resistance

It has long been known that type 2 diabetes is linked to obesity, particularly fat inside the belly. Now, researchers at the Joslin Diabetes Center have found that fat from other areas of the body can actually reduce insulin resistance and improve insulin sensitivity.

In a study published in the May issue of Cell Metabolism, a team lead by C. Ronald Kahn, M.D. found that subcutaneous fat -- fat found below the skin, usually in the hips and thighs -- is associated with reduced insulin levels and improved insulin sensitivity.

“This points to a new opportunity to find substances made by subcutaneous fat that may actually be good for glucose metabolism,’’ said Dr. Kahn, Head of the Joslin Research Section on Obesity and Hormone Action and the Mary K. Iacocca Professor of Medicine at Harvard Medical School. “If we can identify how subcutaneous fat does this, we will have a big clue as to where to look for these substances.”

Kahn noted that obesity in the abdominal or visceral area -- the classic “beer belly” or “apple” shape -- increases the risk of diabetes and mortality, and said it has been thought that obesity in subcutaneous areas -- the “pear” shape -- might decrease such risks.

“We started out to answer the basic question of whether fat inside the belly is bad for you because of where it is located, or is abdominal fat itself different from fat in other places,” said Kahn, an internationally recognized researcher in diabetes and metabolism.

To test if the differences were due to anatomic location or intrinsic properties of the fat deposits themselves, transplantations were performed in mice. The researchers found that when subcutaneous fat was transplanted into the abdominal area, there was a decrease in body weight, fat mass, glucose and insulin levels and an improvement in insulin sensitivity. By contrast, transplantation of abdominal fat into either the abdominal or subcutaneous area had no effect.

The paper concludes that subcutaneous fat is intrinsically different from visceral fat and may produce substances that can improve glucose metabolism.

“The surprising thing was that it wasn’t where the fat was located,” Kahn said. “It was the kind of fat that was the most important variable. Even more surprising, it wasn’t that abdominal fat was exerting negative effects, but that subcutaneous fat was producing a good effect. Animals with more subcutaneous fat didn’t gain as much weight as they aged, had better insulin sensitivity, lower insulin levels and were improved all around.”

Earlier studies in humans had shown that removal of subcutaneous fat by liposuction does not result in improvement of any aspect of metabolic syndrome, a collection of medical problems related to insulin resistance, but none had focused on possible good effects of this subcutaneous fat. However, one human study did show that obese individuals with high levels of both intra-abdominal and subcutaneous fat were more insulin sensitive than those with only high levels of intra-abdominal fat.

In addition, Kahn noted that a class of diabetes drugs called thiazoladines may cause patients to gain weight in the subcutaneous area, yet also improve insulin sensitivity.

Kahn said it is possible that subcutaneous fat may be producing certain hormones, known as adipokines, which produce beneficial effects on metabolism. These effects may offset the negative effects produced by abdominal fat.

The next step is to identify how subcutaneous fat produces these substances that improve metabolism and then find the substances themselves with the idea of creating a drug that can do the same thing.

“We’re already trying to identify through the use of proteomics what is coming out of the different fat cells,” Kahn said.

Kira Jastive | EurekAlert!
Further information:
http://www.joslin.harvard.edu

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>