Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Not all fat created equal

Joslin researchers find certain body fat reduces insulin resistance

It has long been known that type 2 diabetes is linked to obesity, particularly fat inside the belly. Now, researchers at the Joslin Diabetes Center have found that fat from other areas of the body can actually reduce insulin resistance and improve insulin sensitivity.

In a study published in the May issue of Cell Metabolism, a team lead by C. Ronald Kahn, M.D. found that subcutaneous fat -- fat found below the skin, usually in the hips and thighs -- is associated with reduced insulin levels and improved insulin sensitivity.

“This points to a new opportunity to find substances made by subcutaneous fat that may actually be good for glucose metabolism,’’ said Dr. Kahn, Head of the Joslin Research Section on Obesity and Hormone Action and the Mary K. Iacocca Professor of Medicine at Harvard Medical School. “If we can identify how subcutaneous fat does this, we will have a big clue as to where to look for these substances.”

Kahn noted that obesity in the abdominal or visceral area -- the classic “beer belly” or “apple” shape -- increases the risk of diabetes and mortality, and said it has been thought that obesity in subcutaneous areas -- the “pear” shape -- might decrease such risks.

“We started out to answer the basic question of whether fat inside the belly is bad for you because of where it is located, or is abdominal fat itself different from fat in other places,” said Kahn, an internationally recognized researcher in diabetes and metabolism.

To test if the differences were due to anatomic location or intrinsic properties of the fat deposits themselves, transplantations were performed in mice. The researchers found that when subcutaneous fat was transplanted into the abdominal area, there was a decrease in body weight, fat mass, glucose and insulin levels and an improvement in insulin sensitivity. By contrast, transplantation of abdominal fat into either the abdominal or subcutaneous area had no effect.

The paper concludes that subcutaneous fat is intrinsically different from visceral fat and may produce substances that can improve glucose metabolism.

“The surprising thing was that it wasn’t where the fat was located,” Kahn said. “It was the kind of fat that was the most important variable. Even more surprising, it wasn’t that abdominal fat was exerting negative effects, but that subcutaneous fat was producing a good effect. Animals with more subcutaneous fat didn’t gain as much weight as they aged, had better insulin sensitivity, lower insulin levels and were improved all around.”

Earlier studies in humans had shown that removal of subcutaneous fat by liposuction does not result in improvement of any aspect of metabolic syndrome, a collection of medical problems related to insulin resistance, but none had focused on possible good effects of this subcutaneous fat. However, one human study did show that obese individuals with high levels of both intra-abdominal and subcutaneous fat were more insulin sensitive than those with only high levels of intra-abdominal fat.

In addition, Kahn noted that a class of diabetes drugs called thiazoladines may cause patients to gain weight in the subcutaneous area, yet also improve insulin sensitivity.

Kahn said it is possible that subcutaneous fat may be producing certain hormones, known as adipokines, which produce beneficial effects on metabolism. These effects may offset the negative effects produced by abdominal fat.

The next step is to identify how subcutaneous fat produces these substances that improve metabolism and then find the substances themselves with the idea of creating a drug that can do the same thing.

“We’re already trying to identify through the use of proteomics what is coming out of the different fat cells,” Kahn said.

Kira Jastive | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>