Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The design of a vaccine against Leishmaniasis

07.05.2008
The parasitology team at the “Severo Ochoa” Molecular biology centre (CSIC-UAM) has focused its research efforts on the search for a vaccine capable of activating immunity against the parasite that causes leishmaniasis.

There is evidence that proves the feasibility of such an effective vaccine design to prevent leishmaniasis. It is based on first identifying the compounds that the parasite uses to cause the pathology, isolating them, and finally introducing those compounds into the body in a safe manner, giving the immune system a chance to be alert against a possible infection.

Leishmaniasis is a disease caused by a protozoan intracellular parasite of the genus Leishmania that exhibits diverse symptoms and pathologies. These parasites are transmitted by a dipterous insect know as a sand fly (Phlebotomus), that acts as a vector for the disease and its genus differs depending on the geographical area. Human leishmaniasis is widely distributed around the globe and according to data from the WHO there are currently around 12 million people infected and 350 million people living under the threat of the disease in 88 different countries, mainly in tropical and subtropical regions.

In Spain, canine leishmaniasis constitutes a huge problem with 50% of infected dogs developing the pathology. In most cases it ends with the death of the animal, mainly because treatments are not efficient and have highly toxic side effects. Therefore, the house dog is considered the main hide-out for Leishmania infantum in the mediterranean area, playing a key role in the transmission of the parasite into humans through the sand fly. It should also be pointed out that the cases of leishmaniasis in patients suffering from advanced stages of AIDS with weakened immune systems is increasing. And although these cases are not as frequent, there are recently described cases of Leishmaniasis in cats and some horse species in many Mediterranean as well as South American countries.

Among the determining factors for the control of the disease, the virulence of the species of leishmania involved and the genetic predisposition of the host are crucial. Based on the symptoms of the disease, leishmania has been classified in to 4 different types: cutaneous, diffuse cutaneous, mucocutaneous and visceral. Many of the compounds of leishmania are invisible to the immune system, which allows the parasite to avoid our antimicrobial defences and establish an infection. Later, when the parasite starts to disseminate through the organism, other compounds (pathoantigens) are visible to the immune system and are vital for understanding the pathology.

In this context, the work carried out at the Molecular biology research centre Severo Ochoa (CSIC-UAM) by researchers from the parasitology group, formed among others by Doctors Javier Carrión and Carlos Alonso, has been focused on Histones, (proteins responsible for the packaging of DNA). As their latest published work (february edition of Vaccine) states: histones are one of the most important compounds that the parasite uses to define its degree of virulence. Through the isolation of the compounds and using different methodologies available in the molecular parasitology scientific field these researchers have developed immunization strategies that offer an outlook of a bright future in which a vaccine against leishmaniasis is a reality.

Oficina de Cultura Científica | alfa
Further information:
http://dx.doi.org/10.1016/j.vaccine.2007.12.051
http://www.uam.es

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>