Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The design of a vaccine against Leishmaniasis

The parasitology team at the “Severo Ochoa” Molecular biology centre (CSIC-UAM) has focused its research efforts on the search for a vaccine capable of activating immunity against the parasite that causes leishmaniasis.

There is evidence that proves the feasibility of such an effective vaccine design to prevent leishmaniasis. It is based on first identifying the compounds that the parasite uses to cause the pathology, isolating them, and finally introducing those compounds into the body in a safe manner, giving the immune system a chance to be alert against a possible infection.

Leishmaniasis is a disease caused by a protozoan intracellular parasite of the genus Leishmania that exhibits diverse symptoms and pathologies. These parasites are transmitted by a dipterous insect know as a sand fly (Phlebotomus), that acts as a vector for the disease and its genus differs depending on the geographical area. Human leishmaniasis is widely distributed around the globe and according to data from the WHO there are currently around 12 million people infected and 350 million people living under the threat of the disease in 88 different countries, mainly in tropical and subtropical regions.

In Spain, canine leishmaniasis constitutes a huge problem with 50% of infected dogs developing the pathology. In most cases it ends with the death of the animal, mainly because treatments are not efficient and have highly toxic side effects. Therefore, the house dog is considered the main hide-out for Leishmania infantum in the mediterranean area, playing a key role in the transmission of the parasite into humans through the sand fly. It should also be pointed out that the cases of leishmaniasis in patients suffering from advanced stages of AIDS with weakened immune systems is increasing. And although these cases are not as frequent, there are recently described cases of Leishmaniasis in cats and some horse species in many Mediterranean as well as South American countries.

Among the determining factors for the control of the disease, the virulence of the species of leishmania involved and the genetic predisposition of the host are crucial. Based on the symptoms of the disease, leishmania has been classified in to 4 different types: cutaneous, diffuse cutaneous, mucocutaneous and visceral. Many of the compounds of leishmania are invisible to the immune system, which allows the parasite to avoid our antimicrobial defences and establish an infection. Later, when the parasite starts to disseminate through the organism, other compounds (pathoantigens) are visible to the immune system and are vital for understanding the pathology.

In this context, the work carried out at the Molecular biology research centre Severo Ochoa (CSIC-UAM) by researchers from the parasitology group, formed among others by Doctors Javier Carrión and Carlos Alonso, has been focused on Histones, (proteins responsible for the packaging of DNA). As their latest published work (february edition of Vaccine) states: histones are one of the most important compounds that the parasite uses to define its degree of virulence. Through the isolation of the compounds and using different methodologies available in the molecular parasitology scientific field these researchers have developed immunization strategies that offer an outlook of a bright future in which a vaccine against leishmaniasis is a reality.

Oficina de Cultura Científica | alfa
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>