Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fluid forces within the body help invasive bacteria

28.06.2002


Further study may help make biomedical devices safer and explain urinary tract infections


The Cell paper shows how force stretches FimH. The active site is green, and the force stretches the segment that connects to the rest of the bacteria, in pink.



Researchers at the University of Washington have learned that something most people take for granted is not true: that the force of fluids within the human body helps to break the adhesive bonds of invasive bacteria and counterbalance infection.

Most scientists as well as lay people assume, for example, that a sneeze helps clear infection, or that urine helps to clear bacteria from the urinary tract.


This may be true in some cases, but not in all. The presence of fluid force within the body, called shear stress, actually helps the bacteria that cause urinary tract infections, E. coli, to thrive. UW researchers have identified a mechanism by which the bacterial adhesion protein FimH can detect the presence of shear flow and "lock down" the bacteria on the surface being invaded. The protein, which acts as a nanometer-scale mechanical switch, senses when the force is reduced, thus giving the bacteria a chance to scurry along safely.

(A nanometer cannot be seen with the naked eye. It is one-thousandth of a micrometer; in comparison, a strand of human hair can be 50 to 100 micrometers thick.)

The simplest way to think of this is that some bacteria work like a "finger trap." The harder you pull, the harder your fingers stick in the trap. The more you move your fingers together without force, the looser the trap.

The findings are described in the June 28 issue of the journal Cell.

"E. coli has developed the ability to hold on tight only when the body fluid is trying to push it away. Just by using this finger trap-like mechanism, they’re sensing the strength and direction of the flow. Bacteria will resist high forces that threaten to remove them from the surface, but might move along with a weak ’non-threatening’ flow. In this way, they can move actually against the removing flow," says Dr. Evgeni Sokurenko, one of the authors and research assistant professor of microbiology in the UW School of Medicine.

Before this paper, people have assumed that E.coli travel from the urinary tract to the kidney only by sending forth bacteria that swim freely against the urine flow until they land on a place to colonize.

The new findings also have significant medical implications. For example,

  • Urinary tract infection is the most common bacterial infection. It affects at least 7 million women a year in the United States and results is more than a billion dollars in direct care costs.
  • Millions of people die each year through infections caused by bacteria settling on surfaces of biomedical implants and devices.

"We need to know how bacterial adhesion is altered by shear," says another author, Dr. Viola Vogel, director of the University of Washington’s Center for Nanotechnology in the Department of Bioengineering. "The most amazing part of this is that conventional wisdom says that bacteria have a more difficult time adhering to surfaces when they are subjected to shear force – whether the bacteria are in the intestines, in the urinary tract or in biomedical implants. This paper explains how bacteria firmly adhere to surfaces under shear flow, which is remarkable."

Other authors of the paper include Wendy E. Thomas, of the UW Department of Bioengineering, Dr. Elena Trintchina of the Department of Microbiology and Manu Forero of the Department of Physics.

"This is a fairly startling concept," says Dr. Harry L.T. Mobley, professor of microbiology and immunology at the University of Maryland School of Medicine. He is not an author of the paper. "This describes a protein that sticks to things. Usually, we think of a protein either sticking to something or not sticking to something. Here we see a protein binding tighter when it is trying to be sheared off. That opens the door to further investigation."

Presently, most research operates on the assumption that shear stress reduces the lifetime of a receptor bond. However, the paper in Cell suggests that the force might be exactly what it takes to get the bacteria to adhere.

"Bacterial adhesion has been described for a century – bacteria need to adhere in order to colonize," Sokurenko says. "It’s taken a century before we’ve been able to understand what happens once you see the bacteria clump red blood cells. What happens is that the bacteria and blood cells start to separate after you stop shaking. Then, if you shake them again, they clump again. The moment shear starts pushing them away from the surface, the bacteria adhere tightly. It demonstrates an amazing flexibility by infectious bacteria and provides a mechanism for bacteria to resist the effects of free-flowing inhibitor molecules that can block the adhesion."

In other words, E. coli appears designed to colonize parts of the body that are exposed to a lot of shear force. It has hair-like protrusions, fimbriae, (with the FimH protein on their tips) that touch the nearby surface, detect the dragging force, and set off a chain of molecular events that cause it to cling more effectively.

The computationally derived insights of how the switch works were tested by using genetic approaches to change individual amino acids on FimH. Thomas and Vogel developed a structural model using steered molecular dynamic simulations describing how mechanical force switches the adhesion strength of FimH from low to high.

"It’s quite remarkable, because this force-induced switching is happening at the tip of fimbriae along distance away from the cell membrane," Thomas says. "It makes you wonder how many more proteins exist that are switched mechanically – that is a fascinating area for research."

"We need to know how bacterial adhesion is altered by shear. FimH is the second adhesion protein, after fibronectin, for which we have established a structural mechanism for how nature uses mechanical force to regulate protein function. These adhesion proteins thus serve as nanoscale switches that convert mechanical stimuli into a chemical response," Vogel says

The forces described in the paper are within the range of shear force found within the body.

UW’s Departments of Microbiology and Bioengineering do considerable research on bacterial adhesion and biomedical devices, respectively.

"A lot of bacteria have been studied under static conditions. What this paper should alert people to is that force profoundly affects the behavior of bacteria and their ability to bind to target cells," Vogel says.


###
For a video of bacterial movement during flow, see http://www.washington.edu/newsroom/news/images/lotohi.avi The video shows how E. coli moves around on while surrounded by low flow, but then locks down and grips its current position when heavy flow is present.

http://www.washington.edu/newsroom/news/images/fimhB.jpg The Cell paper shows how force stretches FimH. The active site is green, and the force stretches the segment that connects to the rest of the bacteria, in pink.


Walter Neary | EurekAlert!

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>