Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fluid forces within the body help invasive bacteria

28.06.2002


Further study may help make biomedical devices safer and explain urinary tract infections


The Cell paper shows how force stretches FimH. The active site is green, and the force stretches the segment that connects to the rest of the bacteria, in pink.



Researchers at the University of Washington have learned that something most people take for granted is not true: that the force of fluids within the human body helps to break the adhesive bonds of invasive bacteria and counterbalance infection.

Most scientists as well as lay people assume, for example, that a sneeze helps clear infection, or that urine helps to clear bacteria from the urinary tract.


This may be true in some cases, but not in all. The presence of fluid force within the body, called shear stress, actually helps the bacteria that cause urinary tract infections, E. coli, to thrive. UW researchers have identified a mechanism by which the bacterial adhesion protein FimH can detect the presence of shear flow and "lock down" the bacteria on the surface being invaded. The protein, which acts as a nanometer-scale mechanical switch, senses when the force is reduced, thus giving the bacteria a chance to scurry along safely.

(A nanometer cannot be seen with the naked eye. It is one-thousandth of a micrometer; in comparison, a strand of human hair can be 50 to 100 micrometers thick.)

The simplest way to think of this is that some bacteria work like a "finger trap." The harder you pull, the harder your fingers stick in the trap. The more you move your fingers together without force, the looser the trap.

The findings are described in the June 28 issue of the journal Cell.

"E. coli has developed the ability to hold on tight only when the body fluid is trying to push it away. Just by using this finger trap-like mechanism, they’re sensing the strength and direction of the flow. Bacteria will resist high forces that threaten to remove them from the surface, but might move along with a weak ’non-threatening’ flow. In this way, they can move actually against the removing flow," says Dr. Evgeni Sokurenko, one of the authors and research assistant professor of microbiology in the UW School of Medicine.

Before this paper, people have assumed that E.coli travel from the urinary tract to the kidney only by sending forth bacteria that swim freely against the urine flow until they land on a place to colonize.

The new findings also have significant medical implications. For example,

  • Urinary tract infection is the most common bacterial infection. It affects at least 7 million women a year in the United States and results is more than a billion dollars in direct care costs.
  • Millions of people die each year through infections caused by bacteria settling on surfaces of biomedical implants and devices.

"We need to know how bacterial adhesion is altered by shear," says another author, Dr. Viola Vogel, director of the University of Washington’s Center for Nanotechnology in the Department of Bioengineering. "The most amazing part of this is that conventional wisdom says that bacteria have a more difficult time adhering to surfaces when they are subjected to shear force – whether the bacteria are in the intestines, in the urinary tract or in biomedical implants. This paper explains how bacteria firmly adhere to surfaces under shear flow, which is remarkable."

Other authors of the paper include Wendy E. Thomas, of the UW Department of Bioengineering, Dr. Elena Trintchina of the Department of Microbiology and Manu Forero of the Department of Physics.

"This is a fairly startling concept," says Dr. Harry L.T. Mobley, professor of microbiology and immunology at the University of Maryland School of Medicine. He is not an author of the paper. "This describes a protein that sticks to things. Usually, we think of a protein either sticking to something or not sticking to something. Here we see a protein binding tighter when it is trying to be sheared off. That opens the door to further investigation."

Presently, most research operates on the assumption that shear stress reduces the lifetime of a receptor bond. However, the paper in Cell suggests that the force might be exactly what it takes to get the bacteria to adhere.

"Bacterial adhesion has been described for a century – bacteria need to adhere in order to colonize," Sokurenko says. "It’s taken a century before we’ve been able to understand what happens once you see the bacteria clump red blood cells. What happens is that the bacteria and blood cells start to separate after you stop shaking. Then, if you shake them again, they clump again. The moment shear starts pushing them away from the surface, the bacteria adhere tightly. It demonstrates an amazing flexibility by infectious bacteria and provides a mechanism for bacteria to resist the effects of free-flowing inhibitor molecules that can block the adhesion."

In other words, E. coli appears designed to colonize parts of the body that are exposed to a lot of shear force. It has hair-like protrusions, fimbriae, (with the FimH protein on their tips) that touch the nearby surface, detect the dragging force, and set off a chain of molecular events that cause it to cling more effectively.

The computationally derived insights of how the switch works were tested by using genetic approaches to change individual amino acids on FimH. Thomas and Vogel developed a structural model using steered molecular dynamic simulations describing how mechanical force switches the adhesion strength of FimH from low to high.

"It’s quite remarkable, because this force-induced switching is happening at the tip of fimbriae along distance away from the cell membrane," Thomas says. "It makes you wonder how many more proteins exist that are switched mechanically – that is a fascinating area for research."

"We need to know how bacterial adhesion is altered by shear. FimH is the second adhesion protein, after fibronectin, for which we have established a structural mechanism for how nature uses mechanical force to regulate protein function. These adhesion proteins thus serve as nanoscale switches that convert mechanical stimuli into a chemical response," Vogel says

The forces described in the paper are within the range of shear force found within the body.

UW’s Departments of Microbiology and Bioengineering do considerable research on bacterial adhesion and biomedical devices, respectively.

"A lot of bacteria have been studied under static conditions. What this paper should alert people to is that force profoundly affects the behavior of bacteria and their ability to bind to target cells," Vogel says.


###
For a video of bacterial movement during flow, see http://www.washington.edu/newsroom/news/images/lotohi.avi The video shows how E. coli moves around on while surrounded by low flow, but then locks down and grips its current position when heavy flow is present.

http://www.washington.edu/newsroom/news/images/fimhB.jpg The Cell paper shows how force stretches FimH. The active site is green, and the force stretches the segment that connects to the rest of the bacteria, in pink.


Walter Neary | EurekAlert!

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>