Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fluid forces within the body help invasive bacteria

28.06.2002


Further study may help make biomedical devices safer and explain urinary tract infections


The Cell paper shows how force stretches FimH. The active site is green, and the force stretches the segment that connects to the rest of the bacteria, in pink.



Researchers at the University of Washington have learned that something most people take for granted is not true: that the force of fluids within the human body helps to break the adhesive bonds of invasive bacteria and counterbalance infection.

Most scientists as well as lay people assume, for example, that a sneeze helps clear infection, or that urine helps to clear bacteria from the urinary tract.


This may be true in some cases, but not in all. The presence of fluid force within the body, called shear stress, actually helps the bacteria that cause urinary tract infections, E. coli, to thrive. UW researchers have identified a mechanism by which the bacterial adhesion protein FimH can detect the presence of shear flow and "lock down" the bacteria on the surface being invaded. The protein, which acts as a nanometer-scale mechanical switch, senses when the force is reduced, thus giving the bacteria a chance to scurry along safely.

(A nanometer cannot be seen with the naked eye. It is one-thousandth of a micrometer; in comparison, a strand of human hair can be 50 to 100 micrometers thick.)

The simplest way to think of this is that some bacteria work like a "finger trap." The harder you pull, the harder your fingers stick in the trap. The more you move your fingers together without force, the looser the trap.

The findings are described in the June 28 issue of the journal Cell.

"E. coli has developed the ability to hold on tight only when the body fluid is trying to push it away. Just by using this finger trap-like mechanism, they’re sensing the strength and direction of the flow. Bacteria will resist high forces that threaten to remove them from the surface, but might move along with a weak ’non-threatening’ flow. In this way, they can move actually against the removing flow," says Dr. Evgeni Sokurenko, one of the authors and research assistant professor of microbiology in the UW School of Medicine.

Before this paper, people have assumed that E.coli travel from the urinary tract to the kidney only by sending forth bacteria that swim freely against the urine flow until they land on a place to colonize.

The new findings also have significant medical implications. For example,

  • Urinary tract infection is the most common bacterial infection. It affects at least 7 million women a year in the United States and results is more than a billion dollars in direct care costs.
  • Millions of people die each year through infections caused by bacteria settling on surfaces of biomedical implants and devices.

"We need to know how bacterial adhesion is altered by shear," says another author, Dr. Viola Vogel, director of the University of Washington’s Center for Nanotechnology in the Department of Bioengineering. "The most amazing part of this is that conventional wisdom says that bacteria have a more difficult time adhering to surfaces when they are subjected to shear force – whether the bacteria are in the intestines, in the urinary tract or in biomedical implants. This paper explains how bacteria firmly adhere to surfaces under shear flow, which is remarkable."

Other authors of the paper include Wendy E. Thomas, of the UW Department of Bioengineering, Dr. Elena Trintchina of the Department of Microbiology and Manu Forero of the Department of Physics.

"This is a fairly startling concept," says Dr. Harry L.T. Mobley, professor of microbiology and immunology at the University of Maryland School of Medicine. He is not an author of the paper. "This describes a protein that sticks to things. Usually, we think of a protein either sticking to something or not sticking to something. Here we see a protein binding tighter when it is trying to be sheared off. That opens the door to further investigation."

Presently, most research operates on the assumption that shear stress reduces the lifetime of a receptor bond. However, the paper in Cell suggests that the force might be exactly what it takes to get the bacteria to adhere.

"Bacterial adhesion has been described for a century – bacteria need to adhere in order to colonize," Sokurenko says. "It’s taken a century before we’ve been able to understand what happens once you see the bacteria clump red blood cells. What happens is that the bacteria and blood cells start to separate after you stop shaking. Then, if you shake them again, they clump again. The moment shear starts pushing them away from the surface, the bacteria adhere tightly. It demonstrates an amazing flexibility by infectious bacteria and provides a mechanism for bacteria to resist the effects of free-flowing inhibitor molecules that can block the adhesion."

In other words, E. coli appears designed to colonize parts of the body that are exposed to a lot of shear force. It has hair-like protrusions, fimbriae, (with the FimH protein on their tips) that touch the nearby surface, detect the dragging force, and set off a chain of molecular events that cause it to cling more effectively.

The computationally derived insights of how the switch works were tested by using genetic approaches to change individual amino acids on FimH. Thomas and Vogel developed a structural model using steered molecular dynamic simulations describing how mechanical force switches the adhesion strength of FimH from low to high.

"It’s quite remarkable, because this force-induced switching is happening at the tip of fimbriae along distance away from the cell membrane," Thomas says. "It makes you wonder how many more proteins exist that are switched mechanically – that is a fascinating area for research."

"We need to know how bacterial adhesion is altered by shear. FimH is the second adhesion protein, after fibronectin, for which we have established a structural mechanism for how nature uses mechanical force to regulate protein function. These adhesion proteins thus serve as nanoscale switches that convert mechanical stimuli into a chemical response," Vogel says

The forces described in the paper are within the range of shear force found within the body.

UW’s Departments of Microbiology and Bioengineering do considerable research on bacterial adhesion and biomedical devices, respectively.

"A lot of bacteria have been studied under static conditions. What this paper should alert people to is that force profoundly affects the behavior of bacteria and their ability to bind to target cells," Vogel says.


###
For a video of bacterial movement during flow, see http://www.washington.edu/newsroom/news/images/lotohi.avi The video shows how E. coli moves around on while surrounded by low flow, but then locks down and grips its current position when heavy flow is present.

http://www.washington.edu/newsroom/news/images/fimhB.jpg The Cell paper shows how force stretches FimH. The active site is green, and the force stretches the segment that connects to the rest of the bacteria, in pink.


Walter Neary | EurekAlert!

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>