Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bleach-producing enzyme found to modulate blood vessel dilation during inflammation


Findings important in developing new drugs to treat inflammatory vascular diseases

An enzyme that stimulates the production of chlorine bleach in cells to kill bacteria and other invading pathogens also turns off a signal that regulates blood vessel dilation during inflammation, researchers at the UC Davis School of Medicine and Medical Center have found.

The research -- conducted in collaboration with scientists at the University of Alabama at Birmingham, UCLA and the University of Iowa and reported in the June 28 issue of the journal Science -- is important because it identifies a previously unrecognized function for an abundant protein of the immune system and may reveal a new molecular target for the development of drugs to treat a variety of inflammatory vascular diseases.

The bleach-producing enzyme, known as myeloperoxidase, is a green-colored protein found in abundant supply in white blood cells, one of the sentries of the immune system. As white blood cells circulate in the bloodstream and accumulate at sites of infection or injury, they engulf bacteria and other foreign organisms. Just as bleach disinfects kitchens and bathrooms, this enzyme is released from storage sites within the white blood cell to locally produce hypochlorous acid, or chlorine bleach, as a bactericidal agent.

"Myeloperoxidase has been known to be an important component of the immune system," said Jason P. Eiserich, lead author and assistant professor of medicine and human physiology at the UC Davis School of Medicine and Medical Center. "It is present in very high concentrations in white blood cells and provides an important line of defense against invading micro-organisms. Since neutrophils are also known to contribute to impaired vascular function during acute inflammatory responses, we reasoned that myeloperoxidase may be a central player. Our studies show that myeloperoxidase does affect the vasculature, but by a pathway independent of its well-characterized capacity to produce chlorine bleach."

Under normal conditions, a chemical signal, nitric oxide, produced by endothelial cells lining the blood vessel wall, acts as an important vasodilator. The research team found that following the induction of acute inflammation in rodent models, myeloperoxidase is released from activated white blood cells, permeates vascular cells and is deposited within the blood vessel wall where it acts to consume nitric oxide, thereby blocking the signal that dilates blood vessels. Cellular and biochemical studies have corroborated the inhibitory role of myeloperoxidase.

"Identifying a protein that modulates nitric oxide-dependent blood vessel dilation has important implications for the potential treatment of inflammatory vascular diseases," said Eiserich. "Under acute inflammatory conditions, such as intense bacterial infection, this enzyme may provide a physiologic means for removing excessive nitric oxide levels and preventing severe low blood pressure conditions from developing. Drugs aimed at mimicking this enzymatic activity may be useful for treating systemic hypotension during septic shock. Alternatively, drugs aimed at blocking the activity of myeloperoxidase may be useful for treating chronic vascular diseases, such as atherosclerosis, which are commonly characterized by a deficit in the vasodilatory substance nitric oxide and the accumulation of myeloperoxidase in the blood vessel wall."

The research findings also may help guide future studies aimed at identifying whether individuals without the myeloperoxidase enzyme due to hereditary deficiency display abnormal vascular responses during inflammation.

Other scientists contributing to this research include Stephan Baldus, Wenxin Ma, Chunxiang Zhang, Albert Tousson, Laura Castro, C. Roger White and Bruce A. Freeman from the University of Alabama; Marie-Luise Brennan and Aldons J. Lusis from UCLA; and William M. Nauseef from the University of Iowa. The research was supported by grants from the National Institutes of Health, the American Heart Association and the Veterans Affairs Administration.

Carole Gan | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>