Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bleach-producing enzyme found to modulate blood vessel dilation during inflammation

28.06.2002


Findings important in developing new drugs to treat inflammatory vascular diseases



An enzyme that stimulates the production of chlorine bleach in cells to kill bacteria and other invading pathogens also turns off a signal that regulates blood vessel dilation during inflammation, researchers at the UC Davis School of Medicine and Medical Center have found.

The research -- conducted in collaboration with scientists at the University of Alabama at Birmingham, UCLA and the University of Iowa and reported in the June 28 issue of the journal Science -- is important because it identifies a previously unrecognized function for an abundant protein of the immune system and may reveal a new molecular target for the development of drugs to treat a variety of inflammatory vascular diseases.


The bleach-producing enzyme, known as myeloperoxidase, is a green-colored protein found in abundant supply in white blood cells, one of the sentries of the immune system. As white blood cells circulate in the bloodstream and accumulate at sites of infection or injury, they engulf bacteria and other foreign organisms. Just as bleach disinfects kitchens and bathrooms, this enzyme is released from storage sites within the white blood cell to locally produce hypochlorous acid, or chlorine bleach, as a bactericidal agent.

"Myeloperoxidase has been known to be an important component of the immune system," said Jason P. Eiserich, lead author and assistant professor of medicine and human physiology at the UC Davis School of Medicine and Medical Center. "It is present in very high concentrations in white blood cells and provides an important line of defense against invading micro-organisms. Since neutrophils are also known to contribute to impaired vascular function during acute inflammatory responses, we reasoned that myeloperoxidase may be a central player. Our studies show that myeloperoxidase does affect the vasculature, but by a pathway independent of its well-characterized capacity to produce chlorine bleach."

Under normal conditions, a chemical signal, nitric oxide, produced by endothelial cells lining the blood vessel wall, acts as an important vasodilator. The research team found that following the induction of acute inflammation in rodent models, myeloperoxidase is released from activated white blood cells, permeates vascular cells and is deposited within the blood vessel wall where it acts to consume nitric oxide, thereby blocking the signal that dilates blood vessels. Cellular and biochemical studies have corroborated the inhibitory role of myeloperoxidase.

"Identifying a protein that modulates nitric oxide-dependent blood vessel dilation has important implications for the potential treatment of inflammatory vascular diseases," said Eiserich. "Under acute inflammatory conditions, such as intense bacterial infection, this enzyme may provide a physiologic means for removing excessive nitric oxide levels and preventing severe low blood pressure conditions from developing. Drugs aimed at mimicking this enzymatic activity may be useful for treating systemic hypotension during septic shock. Alternatively, drugs aimed at blocking the activity of myeloperoxidase may be useful for treating chronic vascular diseases, such as atherosclerosis, which are commonly characterized by a deficit in the vasodilatory substance nitric oxide and the accumulation of myeloperoxidase in the blood vessel wall."

The research findings also may help guide future studies aimed at identifying whether individuals without the myeloperoxidase enzyme due to hereditary deficiency display abnormal vascular responses during inflammation.


Other scientists contributing to this research include Stephan Baldus, Wenxin Ma, Chunxiang Zhang, Albert Tousson, Laura Castro, C. Roger White and Bruce A. Freeman from the University of Alabama; Marie-Luise Brennan and Aldons J. Lusis from UCLA; and William M. Nauseef from the University of Iowa. The research was supported by grants from the National Institutes of Health, the American Heart Association and the Veterans Affairs Administration.

Carole Gan | EurekAlert!
Further information:
http://news.ucdmc.ucdavis.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>