Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bleach-producing enzyme found to modulate blood vessel dilation during inflammation

28.06.2002


Findings important in developing new drugs to treat inflammatory vascular diseases



An enzyme that stimulates the production of chlorine bleach in cells to kill bacteria and other invading pathogens also turns off a signal that regulates blood vessel dilation during inflammation, researchers at the UC Davis School of Medicine and Medical Center have found.

The research -- conducted in collaboration with scientists at the University of Alabama at Birmingham, UCLA and the University of Iowa and reported in the June 28 issue of the journal Science -- is important because it identifies a previously unrecognized function for an abundant protein of the immune system and may reveal a new molecular target for the development of drugs to treat a variety of inflammatory vascular diseases.


The bleach-producing enzyme, known as myeloperoxidase, is a green-colored protein found in abundant supply in white blood cells, one of the sentries of the immune system. As white blood cells circulate in the bloodstream and accumulate at sites of infection or injury, they engulf bacteria and other foreign organisms. Just as bleach disinfects kitchens and bathrooms, this enzyme is released from storage sites within the white blood cell to locally produce hypochlorous acid, or chlorine bleach, as a bactericidal agent.

"Myeloperoxidase has been known to be an important component of the immune system," said Jason P. Eiserich, lead author and assistant professor of medicine and human physiology at the UC Davis School of Medicine and Medical Center. "It is present in very high concentrations in white blood cells and provides an important line of defense against invading micro-organisms. Since neutrophils are also known to contribute to impaired vascular function during acute inflammatory responses, we reasoned that myeloperoxidase may be a central player. Our studies show that myeloperoxidase does affect the vasculature, but by a pathway independent of its well-characterized capacity to produce chlorine bleach."

Under normal conditions, a chemical signal, nitric oxide, produced by endothelial cells lining the blood vessel wall, acts as an important vasodilator. The research team found that following the induction of acute inflammation in rodent models, myeloperoxidase is released from activated white blood cells, permeates vascular cells and is deposited within the blood vessel wall where it acts to consume nitric oxide, thereby blocking the signal that dilates blood vessels. Cellular and biochemical studies have corroborated the inhibitory role of myeloperoxidase.

"Identifying a protein that modulates nitric oxide-dependent blood vessel dilation has important implications for the potential treatment of inflammatory vascular diseases," said Eiserich. "Under acute inflammatory conditions, such as intense bacterial infection, this enzyme may provide a physiologic means for removing excessive nitric oxide levels and preventing severe low blood pressure conditions from developing. Drugs aimed at mimicking this enzymatic activity may be useful for treating systemic hypotension during septic shock. Alternatively, drugs aimed at blocking the activity of myeloperoxidase may be useful for treating chronic vascular diseases, such as atherosclerosis, which are commonly characterized by a deficit in the vasodilatory substance nitric oxide and the accumulation of myeloperoxidase in the blood vessel wall."

The research findings also may help guide future studies aimed at identifying whether individuals without the myeloperoxidase enzyme due to hereditary deficiency display abnormal vascular responses during inflammation.


Other scientists contributing to this research include Stephan Baldus, Wenxin Ma, Chunxiang Zhang, Albert Tousson, Laura Castro, C. Roger White and Bruce A. Freeman from the University of Alabama; Marie-Luise Brennan and Aldons J. Lusis from UCLA; and William M. Nauseef from the University of Iowa. The research was supported by grants from the National Institutes of Health, the American Heart Association and the Veterans Affairs Administration.

Carole Gan | EurekAlert!
Further information:
http://news.ucdmc.ucdavis.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>