Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone marrow transplants may be improved due to the uncovering of a key mechanism

28.06.2002


Weizmann Institute scientists have uncovered a key mechanism that enables stem cells to exit the bone marrow into the blood circulation of healthy donors, as well as patients suffering from leukemia, other malignancies and blood disorders. Published in the current July issue of Nature Immunology, the findings may lead to more efficient clinical stem cell transplantations.



Bone marrow transplantation is a last-resort treatment that saves the lives of many patients with cancer and inherited blood disorders. In a transplantation, the patient’s malignant or defective stem cells in the marrow are destroyed, and healthy stem cells – either from a healthy donor or from the patient himself before or during treatment with chemotherapy – must be "encouraged" to come out of the marrow into the bloodstream (in other words, they must be "mobilized"). Thus, scientists have been trying to find out what triggers stem cell mobilization.

Dr. Tsvee Lapidot of Weizmann’s Immunology Department, and his PhD student, Isabelle Petit, found that the degradation of SDF-1, a key protein in the bone marrow, is crucial for stem cell mobilization. SDF-1 had previously been found by this and other research teams worldwide to anchor stem cells inside the marrow by activating adhesion molecules (molecules that serve as "glue"). Uncovered today is the "anchors aweigh" mechanism that frees stem cells into the blood.


The scientists investigated stimulation with the growth factor G-CSF, currently the most common clinical method used to induce stem cell mobilization. (In addition to its role in bone marrow transplantation, it is also used to treat children suffering from neutropenia, i.e. lack of white blood cells in the circulation). Before this study, G-CSF’s mode of action was largely unknown. Lapidot and Petit found that it reduces the number of SDF-1 proteins in the marrow by causing the production of degrading enzymes, in particular elastase. The result: stem cells attached to the marrow lose their "anchors" and flow into the bloodstream. Stem cells produced during SDF-1 degradation are not able to "cast anchor" to begin with and will also exit the marrow. The scientists found that stem cell mobilization peaked when SDF-1 levels in the bone marrow were at their lowest.

In addition, the team observed another of G-CSF’s effects: it causes an increase in the number of receptors of a certain type (called CXCR4) on stem cells and maturing white blood cells in the bone marrow. CXCR4 is the receptor that binds specifically with SDF-1. Surprisingly, they found that interactions between SDF-1 and CXCR4 are necessary for mobilization to take place. Inhibition of SDF-1 and CXCR4 interactions with neutralizing antibodies blocked stem cell mobilization.

The findings may lead to improved collection of stem cells for clinical transplantations. They also shed new light on neutropenia, resulting from a genetic defect in the elastase enzyme, which the group found plays a central role in degrading SDF-1.

An experimental system for human stem cells developed by Dr. Lapidot and his colleagues in 1999 enables the study of the mechanism by which human blood forming stem cells migrate from the blood into the bone marrow by transplanting human stem cells into immunodeficient mice, which lack the ability to reject foreign cells. In the current study this model was used to reveal the mechanism of human stem cell mobilization in these mice. Part of the study was also conducted with samples obtained from healthy donors treated with G-CSF for clinical stem cell transplantation.


###
The Weizmann Institute of Science in Rehovot, Israel is one of the world’s foremost centers of scientific research and graduate study. Its 2,500 scientists, students, technicians and engineers pursue basic research in the quest for knowledge and to enhance the quality of human life. New ways of fighting disease and hunger, protecting the environment, and harnessing alternative sources of energy are high priorities at Weizmann.


Jeffrey J. Sussman | EurekAlert!

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>