Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone marrow transplants may be improved due to the uncovering of a key mechanism

28.06.2002


Weizmann Institute scientists have uncovered a key mechanism that enables stem cells to exit the bone marrow into the blood circulation of healthy donors, as well as patients suffering from leukemia, other malignancies and blood disorders. Published in the current July issue of Nature Immunology, the findings may lead to more efficient clinical stem cell transplantations.



Bone marrow transplantation is a last-resort treatment that saves the lives of many patients with cancer and inherited blood disorders. In a transplantation, the patient’s malignant or defective stem cells in the marrow are destroyed, and healthy stem cells – either from a healthy donor or from the patient himself before or during treatment with chemotherapy – must be "encouraged" to come out of the marrow into the bloodstream (in other words, they must be "mobilized"). Thus, scientists have been trying to find out what triggers stem cell mobilization.

Dr. Tsvee Lapidot of Weizmann’s Immunology Department, and his PhD student, Isabelle Petit, found that the degradation of SDF-1, a key protein in the bone marrow, is crucial for stem cell mobilization. SDF-1 had previously been found by this and other research teams worldwide to anchor stem cells inside the marrow by activating adhesion molecules (molecules that serve as "glue"). Uncovered today is the "anchors aweigh" mechanism that frees stem cells into the blood.


The scientists investigated stimulation with the growth factor G-CSF, currently the most common clinical method used to induce stem cell mobilization. (In addition to its role in bone marrow transplantation, it is also used to treat children suffering from neutropenia, i.e. lack of white blood cells in the circulation). Before this study, G-CSF’s mode of action was largely unknown. Lapidot and Petit found that it reduces the number of SDF-1 proteins in the marrow by causing the production of degrading enzymes, in particular elastase. The result: stem cells attached to the marrow lose their "anchors" and flow into the bloodstream. Stem cells produced during SDF-1 degradation are not able to "cast anchor" to begin with and will also exit the marrow. The scientists found that stem cell mobilization peaked when SDF-1 levels in the bone marrow were at their lowest.

In addition, the team observed another of G-CSF’s effects: it causes an increase in the number of receptors of a certain type (called CXCR4) on stem cells and maturing white blood cells in the bone marrow. CXCR4 is the receptor that binds specifically with SDF-1. Surprisingly, they found that interactions between SDF-1 and CXCR4 are necessary for mobilization to take place. Inhibition of SDF-1 and CXCR4 interactions with neutralizing antibodies blocked stem cell mobilization.

The findings may lead to improved collection of stem cells for clinical transplantations. They also shed new light on neutropenia, resulting from a genetic defect in the elastase enzyme, which the group found plays a central role in degrading SDF-1.

An experimental system for human stem cells developed by Dr. Lapidot and his colleagues in 1999 enables the study of the mechanism by which human blood forming stem cells migrate from the blood into the bone marrow by transplanting human stem cells into immunodeficient mice, which lack the ability to reject foreign cells. In the current study this model was used to reveal the mechanism of human stem cell mobilization in these mice. Part of the study was also conducted with samples obtained from healthy donors treated with G-CSF for clinical stem cell transplantation.


###
The Weizmann Institute of Science in Rehovot, Israel is one of the world’s foremost centers of scientific research and graduate study. Its 2,500 scientists, students, technicians and engineers pursue basic research in the quest for knowledge and to enhance the quality of human life. New ways of fighting disease and hunger, protecting the environment, and harnessing alternative sources of energy are high priorities at Weizmann.


Jeffrey J. Sussman | EurekAlert!

More articles from Health and Medicine:

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>