Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone marrow transplants may be improved due to the uncovering of a key mechanism

28.06.2002


Weizmann Institute scientists have uncovered a key mechanism that enables stem cells to exit the bone marrow into the blood circulation of healthy donors, as well as patients suffering from leukemia, other malignancies and blood disorders. Published in the current July issue of Nature Immunology, the findings may lead to more efficient clinical stem cell transplantations.



Bone marrow transplantation is a last-resort treatment that saves the lives of many patients with cancer and inherited blood disorders. In a transplantation, the patient’s malignant or defective stem cells in the marrow are destroyed, and healthy stem cells – either from a healthy donor or from the patient himself before or during treatment with chemotherapy – must be "encouraged" to come out of the marrow into the bloodstream (in other words, they must be "mobilized"). Thus, scientists have been trying to find out what triggers stem cell mobilization.

Dr. Tsvee Lapidot of Weizmann’s Immunology Department, and his PhD student, Isabelle Petit, found that the degradation of SDF-1, a key protein in the bone marrow, is crucial for stem cell mobilization. SDF-1 had previously been found by this and other research teams worldwide to anchor stem cells inside the marrow by activating adhesion molecules (molecules that serve as "glue"). Uncovered today is the "anchors aweigh" mechanism that frees stem cells into the blood.


The scientists investigated stimulation with the growth factor G-CSF, currently the most common clinical method used to induce stem cell mobilization. (In addition to its role in bone marrow transplantation, it is also used to treat children suffering from neutropenia, i.e. lack of white blood cells in the circulation). Before this study, G-CSF’s mode of action was largely unknown. Lapidot and Petit found that it reduces the number of SDF-1 proteins in the marrow by causing the production of degrading enzymes, in particular elastase. The result: stem cells attached to the marrow lose their "anchors" and flow into the bloodstream. Stem cells produced during SDF-1 degradation are not able to "cast anchor" to begin with and will also exit the marrow. The scientists found that stem cell mobilization peaked when SDF-1 levels in the bone marrow were at their lowest.

In addition, the team observed another of G-CSF’s effects: it causes an increase in the number of receptors of a certain type (called CXCR4) on stem cells and maturing white blood cells in the bone marrow. CXCR4 is the receptor that binds specifically with SDF-1. Surprisingly, they found that interactions between SDF-1 and CXCR4 are necessary for mobilization to take place. Inhibition of SDF-1 and CXCR4 interactions with neutralizing antibodies blocked stem cell mobilization.

The findings may lead to improved collection of stem cells for clinical transplantations. They also shed new light on neutropenia, resulting from a genetic defect in the elastase enzyme, which the group found plays a central role in degrading SDF-1.

An experimental system for human stem cells developed by Dr. Lapidot and his colleagues in 1999 enables the study of the mechanism by which human blood forming stem cells migrate from the blood into the bone marrow by transplanting human stem cells into immunodeficient mice, which lack the ability to reject foreign cells. In the current study this model was used to reveal the mechanism of human stem cell mobilization in these mice. Part of the study was also conducted with samples obtained from healthy donors treated with G-CSF for clinical stem cell transplantation.


###
The Weizmann Institute of Science in Rehovot, Israel is one of the world’s foremost centers of scientific research and graduate study. Its 2,500 scientists, students, technicians and engineers pursue basic research in the quest for knowledge and to enhance the quality of human life. New ways of fighting disease and hunger, protecting the environment, and harnessing alternative sources of energy are high priorities at Weizmann.


Jeffrey J. Sussman | EurekAlert!

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>