Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes for common heart condition and kidney problem identified

30.04.2008
A gene that can cause the heart to become enlarged, greatly increasing the risk of heart attacks and heart failure, is identified this week in a new study.

A gene that can cause the kidney to become inflamed, which can lead to kidney failure, is also revealed in a parallel discovery.

The heart research, published in the journal Nature Genetics, reveals how a gene called osteoglycin (Ogn), which had not previously been linked with heart function, plays a key role in regulating heart growth. The study suggests that the gene can behave abnormally in some people, and that this can lead to the heart becoming abnormally enlarged.

The researchers hope that through understanding how enlarged hearts are linked to the workings of genes like Ogn, they will be able to develop new treatments for the condition, which affects a large proportion of those with high blood pressure, obesity and diabetes.

Scientists believe that enlarged hearts are caused by a combination of genetic factors and external stimuli such as high blood pressure and obesity. However, the role played by genes has remained largely unknown.

The researchers, from Imperial College London, the Medical Research Council (MRC), and other international institutions, hope that their findings will provide new avenues for treating people who either have an enlarged heart or are at risk of developing one. At present enlarged hearts can only be treated by lowering blood pressure.

The study shows that Ogn regulates the growth of the heart's main pumping chamber, its left ventricle. If the left ventricle thickens, this creates a condition known as elevated Left Ventricular Mass (LVM), a major contributing factor for common heart diseases. When the heart is enlarged it needs more oxygen and becomes stiff. This can cause shortness of breath or lead to a heart attack.

The researchers found that higher than normal levels of Ogn were associated with the heart becoming enlarged in rats and mice and in humans. Dr Stuart Cook, one of the corresponding authors of the study from the MRC Clinical Sciences Centre and the National Heart and Lung Institute at Imperial College London, said:

"Enlarged hearts are very common. A person whose heart is enlarged is more likely to suffer a heart attack or heart failure than someone whose heart is a normal size. We can't currently treat the condition directly, so lowering a patient's blood pressure is the only option we have. Now that we are unravelling how genes control heart growth, we can gain a better understanding of common forms of heart disease. This should lead to new and more effective ways of treating people."

The study was primarily funded by the British Heart Foundation and the UK Department of Health.

The researchers first linked the Ogn gene with elevated LVM by looking at rat models and analysing how LVM related to the genetic makeup of rats with both elevated and normal LVM.

They then carried out the same analyses on samples from the human heart, volunteered by patients who had undergone cardiac surgery at Hammersmith Hospital, part of Imperial College Healthcare NHS Trust, and from a second group of patients from the Netherlands. These analyses showed that out of 22,000 possible genes, Ogn was the gene most strongly correlated with elevated LVM in humans.

Professor Tim Aitman, also a corresponding author of the study from the MRC Clinical Sciences Centre and Imperial College London, added: "This study shows how we can use the wealth of new genome technologies for analysing people's genes to gain a much greater understanding of common human disorders. We already knew that enlarged hearts were linked with conditions such as high blood pressure and obesity but figuring out the genetic causes as well could be key to working out how to treat the condition."

In a parallel development this week, Professor Aitman, working with colleagues including Professor Terry Cook from Imperial College London, has identified a gene which controls the activity of a group of cells thought to be responsible for potentially severe inflammation of the kidney. The gene, also revealed in a study in Nature Genetics, is known as Jund and it could offer a route for tackling the auto-immune destruction of kidney tissue which can occur in lupus patients, causing renal failure.

Jund regulates the activity of macrophages, cells which help us fight infection by eating up cellular debris and pathogens, and stimulating immune cells. The new research showed that when these cells are overactive, they can destroy healthy kidney tissue.

Professor Aitman, who led the Medical Research Council team, said: "We are hoping that this discovery will allow us to find a new and effective way of treating this potentially fatal form of kidney failure. By reducing the activity of the Jund gene, we were able to reduce activity of inflammatory cells that can become overactive in certain diseases of the kidney. Such a therapy would be of obvious benefit to patients suffering from auto-immune diseases such as lupus. This would allow them to avoid dialysis and maintain their quality of life."

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>