Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fight against cancer: EU research develops cancer-killing isotopes

26.06.2002


Highly promising results from clinical trials indicate that alpha-emitting radioisotopes can kill cancer cells. The Commission’s Joint Research Centre (JRC) and Deutsches Krebsforschungszentrum presented this innovative therapy during a recent workshop in Heidelberg. Alpha-immunotherapy should develop into an effective treatment over the next few years and provide new methods of healing for patients. How does the cancer-killing mechanism work? A cancer-cell selective vehicle, (e.g. a monocolonal antibody or a peptide) is connected to a powerful radioactive isotope. As it radioactively decays, the isotope emits particles that can either directly or indirectly kill any cancer cells it encounters. Said EU Research Commissioner Philippe Busquin: "More research is needed, but experts tell us that the results from pre-clinical and first clinical trials are promising. Search-and-destroy isotopes should be helpful in fighting a great number of cancers such as leukaemia, lymphoma (haematological malignancies), microscopic, intraperitoneally growing cancers (e.g. ovarian, stomach), glioblastoma and post-operative treatment of glioma, melanomas, colon tumours, myeloma and palliative treatment of malignant ascites. Multi-disciplinary co-operations between Europe’s best teams are needed to advance this innovative approach. Cancer is a key priority in the EU’s next research programme, to be launched later this year."



One of the key targets of the European Commission’s Sixth Framework programme for Research and Development (2003-2006) is "Combating cancer". Altogether just over €1 billion is earmarked for combating major diseases, of which at least € 400 million should go to cancer research. The objective is to develop better strategies, from prevention to diagnosis and treatment, for fighting cancer. EU research will concentrate on translating the new knowledge being created by genomics and other fields of basic research into applications that improve clinical practice and public health.

As far as research on cancer-killing isotopes is concerned, currently only two organisations world-wide are able to produce such isotopes: the European Commission’s Institute for Transuranium Elements (a branch of the JRC) and the Oak Ridge National Laboratories in the US.


Both the recent results obtained in clinical studies, using bismuth-213 to combat acute myeloid leukaemia, and the first evaluations of the direct use of actinium-225, point to the right direction. Whereas the first isotope emits only one alpha particle during its decay, the latter has a decay chain with 4 alpha particles and could be much more efficient, at least when its full potential can be exploited. At the highest dosage level used (up to100 mCi bismuth-213), no acute toxicity was observed. This breakthrough opens the way for accepting the analyses of other alpha-emitters in a clinical setting also.

The Commission has supported pioneering work at the Deutsches Krebsforschungszentrum (DKFZ) and the Kantonspital of Basel, where the first patients were treated for Non-Hodgkin’s lymphoma and glioblastoma respectively. To date, 37 patients in the US have been treated with bismuth 213 or astatine 211 and 11 patients in Europe.

Other very promising studies on treating melanoma using local antibody conjugated bismuth-213 injection foster scientific understanding and several hypotheses on the operating mechanisms of alpha-damage can therefore be validated. As the use of highly radiotoxic alpha-emitting isotopes is not currently common practice in hospitals, strict requirements need to be respected to allow the large-scale application of this technology.

State-of-the art genomics and proteomics are expected to provide a sound understanding of the governing processes in the application of alpha-emitters and other radioactive isotopes. Such details will help not only in combating cancer, but also in understanding how low-level radiation exposure effects the human genetic makeup. The hope is to produce a patient-tailored drug and/or therapy design in the future, through studying the specific features of particular diseases and their genetic expression.

Fabio Fabbi | Europäische Kommission
Further information:
http://itu.jrc.cec.eu.int/

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>