Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify novel way to prevent cardiac fibrosis

24.04.2008
In a study that points to a new strategy for preventing or possibly reversing fibrosis – the scarring that can lead to organ and tissue damage – researchers at the University of California, San Diego School of Medicine have determined that a molecule called Epac (Exchange protein activated by cAMP1), plays a key role in integrating the body’s pro- and anti-fibrotic response.

The research will be published in the online edition of the Proceedings of the National Academy of Science (PNAS) the week of April 21.

Inflammation is the body’s response to injury in tissues, prompting healing that leads to scars, whether on the skin, or in organs such as the heart, liver or lungs. Such scarring has beneficial properties, but there’s also the risk of excessive scarring, or tissue fibrosis, that can lead to organ damage and loss of function.

The UC San Diego researchers looked at cardiac fibrosis, which can occur in patients who have suffered an infection of the heart muscle or a heart attack. Such fibrosis causes the heart to stiffen so that it cannot adequately fill with blood and then empty itself, a condition known as diastolic dysfunction.

“An old heart is a stiff heart and some injured hearts are stiff as well,” said Paul A. Insel, M.D., UCSD professor of pharmacology and medicine, and principal investigator of the study. “Much of the decrease in cardiovascular function that occurs with aging or, in some patients after a heart attack, can be explained by fibrosis. We wondered: What is responsible for excessive fibrosis" Is there a way to decrease or possibly reverse it"”

It was previously known that a messenger molecule inside of cells, called cAMP, can block fibrosis in the heart. Insel and colleagues explored the mechanism leading to the anti-fibrotic effect, and discovered that the Epac molecule mediates cAMP actions that are involved in cardiac fibrosis. Epac also helps regulate other proteins that contribute to cell death, division, migration and motility.

“We found that Epac activation exerts a very important impact on the function of fibroblasts, the cells responsible for making and secreting collagen and thus for producing tissue fibrosis,” said Insel. “Most exciting was our discovery that multiple agents that promote fibrosis decrease the expression and activation of Epac in fibroblasts from several different tissues – not only in the heart but also in lung, liver and skin.”

The researchers found decreased Epac expression in regions near the site of heart attacks in rats and mice. In addition, they found that by increasing Epac expression, they were able to block the ability of agents to promote fibrosis.

Because increases in cAMP levels can decrease the function of fibroblasts after cell injury, stimulation of the cAMP signaling pathway is a potential way to blunt fibrosis. Increases in Epac expression may provide a novel way to do this, especially in cardiac fibroblasts, Insel added. To test this possibility, the scientists treated fibroblast cells in culture in ways that altered Epac expression, increasing Epac expression using an adenoviral construct.

“Using this strategy to overexpress Epac, we produced an anti-fibrotic effect, thereby inhibiting the synthesis of collagen” said Insel. “Other experiments showed that decreasing Epac expression favored fibrosis; in other words, were pro-fibrotic. Overall, the results show the central role of Epac in determining pro-fibrotic and anti-fibrotic response.”

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>