Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Examining the healing mystery of Aloe

26.06.2002


If grandma gets a bedsore, the best thing to put on it might be a plant that’s been used for 5,000 years.

The mysterious Aloe vera has been a source for healing since Old Testament times, and a Texas A&M University researcher is trying to uncover just what the substances are in the plant that work wonders and how they do it so that more might be learned about treating wounds.

Dr. Ian Tizard, a professor of immunology in the College of Veterinary Medicine, is studying a special polysaccharide, the substance that forms along cell walls of the Aloe vera, to see how it performs its healing tricks.



The Aloe vera is native to North Africa but now can be found almost worldwide, Tizard says. A succulent, it thrives in warm and dry climates very much like cactus does.

But unlike its prickly cactus cousin, Aloe vera is in a class by itself when it comes to certain healing properties.

There are more than 100 species of aloe, but Tizard says Aloe vera is the one that has drawn the most scientific interest.

"When Aloe vera is placed on many types of wounds, such as bedsores, it can often heal the wound quickly, and the likely reason why is the special polysaccharide in it," Tizard explains.

"Many plants contain this polysaccharide, but the kind found in Aloe vera works differently, we’ve learned. It seems to bind growth factors in wounds whereas normally they would be destroyed. Aloe vera polysaccharide seems to speed along the healing process much quicker.

"How it does this, that’s what we’re trying to find out."

Aloe vera (aloe is an Arabic word for a bitter substance, vera is Latin for truth) has long, pointed leaves consisting of green rind and clear pulp. The pulp is the part of the plant that has the healing agents in it.

"It comes out of the plant like a clear liquid, but when it touches human skin, it becomes a gel," Tizard says. "It acts as a wound sealant in this gel state, and no other plants do so."

Especially benefiting from such treatments could be the elderly, who are susceptible to bedsores, diabetic ulcers and vascular (circulation) ulcers.

"Geriatric patients often have wounds that won’t heal properly or take longer to heal," Tizard says. "That’s one of the things we’re looking at - how can wounds heal quicker, and what role does the Aloe vera plant play in this quicker healing process?"

There’s not much of the Aloe vera plant that isn’t useful, Tizard notes.

The rind of the plant has been used as a laxative while the pulp has been put on burns and wounds for thousands of years. Besides being used in lotions and medicines, in recent years cosmetic companies have used Aloe vera in a variety of products, especially moisturizers.


###
Tizard’s research is funded by Delsite Biotechnologies of Irving, Texas.

Contact: Keith Randall at 979-845-4644 or kr@univrel.tamu.edu.

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu/

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>