Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A stem cell type supposed to be crucial for angiogenesis and cancer growth does not exist?

22.04.2008
It is widely believed that tumor angiogenesis and cancer growth critically depend on circulating endothelial precursor cells, mobilized from the bone marrow.

The recent study from researchers at the University of Helsinki, Finland, and Stanford University, US, now suggests that a stem cell type supposed to be crucial for blood vessel formation and cancer growth does not actually exist.

Angiogenesis, the growth of new blood vessels, is a central process in diverse physiological and pathological situations such as healing of wounds and traumas, cardiovascular disorders, inflammatory conditions such as rheumatoid arthritis, and in cancer growth. The current belief about the source of blood vessel wall endothelial cells (ECs) responsible for vascular growth in adults is that a significant and crucial part of neovascular ECs originate from circulating stem and progenitor cells that are first mobilized from the bone marrow (BM), and subsequently differentiate to mature bona fide ECs and incorporate in the vasculature. This concept has become textbook material, and a common theme in modem vascular and cancer biology.

Importantly, it is widely believed that tumor angiogenesis and cancer growth critically depend on BM derived circulating endothelial precursor cells. Endothelial precursors would thus provide a powerful novel approach to block tumor angiogenesis and cure cancer. Correspondingly, therapeutic transplantation of such stem cells would be a promising approach to restore tissue vascularization after ischemic events. Clinical trials with human patients are currently ongoing based on the circulating endothelial precursor cell dogma.

Now, researchers lead by Dr. Petri Salvén at the University of Helsinki, Finland, and the stem cell research pioneer Dr. Irving Weissman at Stanford University, California, have shown that circulating endothelial precursor cells actually do not exist, and that angiogenesis and cancer growth do not involve or depend on such hypothetical stem cells. (PNAS, in press; online 21.-25.4.). By using endothelial cell specific genomic mouse models and most modern three dimensional cellular imaging technologies, they show that endothelial differentiation is not a typical function of BM derived stem cells, and it has to be an extremely rare event if it occurs at all. However, angiogenic and tumor tissues contain large numbers of BM derived cells such as ordinary white blood cells that often are very close to blood vessel walls, and may therefore have been misinterpreted as blood vessel wall ECs in earlier studies utilizing less advanced technologies.

The results have great practical significance when researchers are trying to focus on novel approaches to cure cancer by targeting the normal cells of the body which supply tumors with blood and nutrients. "Our results will help the researchers to concentrate their efforts on molecular and cellular targets that actually exist" says Dr. Salvén, leader of the Helsinki team.

"It has been a learning experience to try to publish results that demonstrate that a number of fellow research have for years been studying nonexistent cells", Dr. Salven comments. "Issues concerning publication bias and nonaccessibility of negative data are really becoming more and more relevant, just as recently seen also in other fields of biomedicine."

Paivi Lehtinen | alfa
Further information:
http://www.helsinki.fi

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>