Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A stem cell type supposed to be crucial for angiogenesis and cancer growth does not exist?

22.04.2008
It is widely believed that tumor angiogenesis and cancer growth critically depend on circulating endothelial precursor cells, mobilized from the bone marrow.

The recent study from researchers at the University of Helsinki, Finland, and Stanford University, US, now suggests that a stem cell type supposed to be crucial for blood vessel formation and cancer growth does not actually exist.

Angiogenesis, the growth of new blood vessels, is a central process in diverse physiological and pathological situations such as healing of wounds and traumas, cardiovascular disorders, inflammatory conditions such as rheumatoid arthritis, and in cancer growth. The current belief about the source of blood vessel wall endothelial cells (ECs) responsible for vascular growth in adults is that a significant and crucial part of neovascular ECs originate from circulating stem and progenitor cells that are first mobilized from the bone marrow (BM), and subsequently differentiate to mature bona fide ECs and incorporate in the vasculature. This concept has become textbook material, and a common theme in modem vascular and cancer biology.

Importantly, it is widely believed that tumor angiogenesis and cancer growth critically depend on BM derived circulating endothelial precursor cells. Endothelial precursors would thus provide a powerful novel approach to block tumor angiogenesis and cure cancer. Correspondingly, therapeutic transplantation of such stem cells would be a promising approach to restore tissue vascularization after ischemic events. Clinical trials with human patients are currently ongoing based on the circulating endothelial precursor cell dogma.

Now, researchers lead by Dr. Petri Salvén at the University of Helsinki, Finland, and the stem cell research pioneer Dr. Irving Weissman at Stanford University, California, have shown that circulating endothelial precursor cells actually do not exist, and that angiogenesis and cancer growth do not involve or depend on such hypothetical stem cells. (PNAS, in press; online 21.-25.4.). By using endothelial cell specific genomic mouse models and most modern three dimensional cellular imaging technologies, they show that endothelial differentiation is not a typical function of BM derived stem cells, and it has to be an extremely rare event if it occurs at all. However, angiogenic and tumor tissues contain large numbers of BM derived cells such as ordinary white blood cells that often are very close to blood vessel walls, and may therefore have been misinterpreted as blood vessel wall ECs in earlier studies utilizing less advanced technologies.

The results have great practical significance when researchers are trying to focus on novel approaches to cure cancer by targeting the normal cells of the body which supply tumors with blood and nutrients. "Our results will help the researchers to concentrate their efforts on molecular and cellular targets that actually exist" says Dr. Salvén, leader of the Helsinki team.

"It has been a learning experience to try to publish results that demonstrate that a number of fellow research have for years been studying nonexistent cells", Dr. Salven comments. "Issues concerning publication bias and nonaccessibility of negative data are really becoming more and more relevant, just as recently seen also in other fields of biomedicine."

Paivi Lehtinen | alfa
Further information:
http://www.helsinki.fi

More articles from Health and Medicine:

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>