Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemotherapy causes delayed severe neural damage

22.04.2008
Cancer treatment with chemotherapeutic agents is often associated with delayed adverse neurological consequences - an occurrence often referred to as “chemobrain” - that may compromise the quality of life of a proportion of cancer survivors.

Now, research published in the open access Journal of Biology demonstrates that treatment with a single chemotherapeutic agent, 5-fluorouracil (5-FU), by itself is sufficient to cause a syndrome of delayed degeneration in the central nervous system (CNS). 5-FU is a widely used chemotherapeutic agent that is employed, alone or in combination with other agents, in the treatment of cancers of the colon, rectum, breast, stomach, pancreas, ovaries and bladder

Little is known about the side-effects of chemotherapy on the CNS, despite their obvious clinical importance. Until now researchers have not fully understood the underlying biology, including whether these effects require: exposure to multiple chemotherapeutic agents; chemotherapeutic agents plus the body’s own response to cancer; blood-brain barrier damage; or inflammation. Clinicians have also lacked animal models to study this important problem.

Professor Mark Noble and colleagues of the University of Rochester Stem Cell and Regenerative Medicine Institute and the Harvard Medical School, Boston discovered that short-term systemic administration of 5-FU to mice caused both acute CNS damage and a syndrome of progressively worsening delayed damage. This damage was not self-repairing, and instead became worse over time. In addition, Noble and colleagues also demonstrated that treatment with chemotherapy also had delayed effects on the speed with which information is transferred from the ear to the brain.

Myelin sheaths are necessary for normal neuronal function. One key finding of the study was that clinically relevant concentrations of 5-FU were toxic not only for dividing cells of the CNS but also for the cells that produce the insulating myelin sheaths (non-dividing oligodendrocytes). The delayed damage the researchers measured was to the myelinated tracts of the CNS and associated with extensive myelin pathology. The findings regarding the speed of ear-to-brain information transfer may offer a non-invasive means of analyzing myelin damage associated with cancer treatment.

“Multiple clinical reports have identified neurotoxicity as a complication of treatment regimens in which chemotherapeutic agents such as 5-fluorouracil are components,” says Noble. “As treatments with chemotherapeutic agents will clearly remain the standard of care for cancer patients for many years to come, the need to better understand such damage is great.”

Professor Noble continues “These studies extend the field of stem cell medicine beyond the use of cell transplantation for tissue repair. It is our knowledge of stem cell biology that allows us to begin to understand some of the causes of this syndrome, as well as providing the means of preventing or repairing this damage.”

This research provides the first demonstration that delayed CNS damage can be induced by a single chemotherapeutic agent and also generates the first animal model of such damage. These studies further demonstrate that this syndrome differs from that caused by irradiation and thus may represent a new class of delayed CNS degenerative damage.

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>