Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Report describes first targeted therapy to produce remission of metastatic melanoma

21.04.2008
In a demonstration that even some of the most hard-to-treat tumors may one day succumb to therapies aimed at molecular "weak points," researchers at Dana-Farber Cancer Institute report the first instance in which metastatic melanoma has been driven into remission by a targeted therapy.

The report, published in the April 20 issue of the Journal of Clinical Oncology, describes the case of a 79-year-old woman with melanoma tumors in several parts of her abdomen. When lab tests showed the tumor cells carried an abnormality in a gene called KIT, the patient enrolled in a clinical trial involving Gleevec (R) (Imatinib), a drug known to target that gene.

Four weeks after beginning therapy, imaging exams showed a dramatic reduction in tumor size and metabolism: two of the tumor masses had disappeared and several others had shrunken considerably. Four months later, the tumors were still in check, and today, nine months after the start of therapy, she continues to take the drug and her condition remains stable.

"This is the first proof of principle that we can find an Achilles' heel in melanoma" -- a gene critical to tumor cell growth and proliferation -- "and, by targeting that gene with a drug, cause the cell to die," says the study's lead author, Stephen Hodi, MD, of Dana-Farber. "It is especially exciting because there haven't been any effective treatments for melanoma patients with metastatic disease."

Although the report involves just one patient, it should inject new confidence in the fight against melanoma, Hodi says. Because previous research has failed to find any genetic Achilles' heels capable of shutting down melanoma cell growth, some researchers had speculated that none may exist for such cells. The discovery of one suggests there may be others.

KIT mutations are found in only a small percentage of melanomas, so Imatinib does not represent a universal treatment for the disease, Hodi explains. Recent studies have found KIT mutations in 11 percent of acral melanomas (which arise in skin without hair follicles, such as that of the palms, foot soles, and nail beds, and account for 5 percent of all melanomas), 21 percent of mucosal melanomas (which arise in the mucous membranes of some organs), and 17 percent of melanomas arising in chronically sun-damaged skin. For patients with these conditions, particularly those who carry a mutation in a particular section of the gene, Imatinib may well prove beneficial.

Imatinib's effectiveness against tumors with KIT mutations was first demonstrated in gastrointestinal stromal tumors (GISTs), a relatively rare malignancy of the digestive tract. An estimated 75-80 percent of GISTs have KIT mutations, and Imatinib has caused such tumors to stabilize or retreat in 75-90 percent of patients receiving it. In most of these patients, however, tumors eventually begin growing again as they become resistant to the drug.

The KIT mutation in the patient described in the study involved a protein-coding section of the gene where DNA was duplicated. This section, known as the "juxtamembrane domain," is the most frequent site of mutation in GIST, and is associated with a strong tumor response to Imatinib.

"Dramatic remissions in metastatic melanoma are something that, as physicians, we've rarely seen," Hodi remarks. "Confirming these results will require enrolling additional patients in clinical trials -- something we're actively working to accomplish."

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu
http://www.danafarber.org

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>