Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Report describes first targeted therapy to produce remission of metastatic melanoma

In a demonstration that even some of the most hard-to-treat tumors may one day succumb to therapies aimed at molecular "weak points," researchers at Dana-Farber Cancer Institute report the first instance in which metastatic melanoma has been driven into remission by a targeted therapy.

The report, published in the April 20 issue of the Journal of Clinical Oncology, describes the case of a 79-year-old woman with melanoma tumors in several parts of her abdomen. When lab tests showed the tumor cells carried an abnormality in a gene called KIT, the patient enrolled in a clinical trial involving Gleevec (R) (Imatinib), a drug known to target that gene.

Four weeks after beginning therapy, imaging exams showed a dramatic reduction in tumor size and metabolism: two of the tumor masses had disappeared and several others had shrunken considerably. Four months later, the tumors were still in check, and today, nine months after the start of therapy, she continues to take the drug and her condition remains stable.

"This is the first proof of principle that we can find an Achilles' heel in melanoma" -- a gene critical to tumor cell growth and proliferation -- "and, by targeting that gene with a drug, cause the cell to die," says the study's lead author, Stephen Hodi, MD, of Dana-Farber. "It is especially exciting because there haven't been any effective treatments for melanoma patients with metastatic disease."

Although the report involves just one patient, it should inject new confidence in the fight against melanoma, Hodi says. Because previous research has failed to find any genetic Achilles' heels capable of shutting down melanoma cell growth, some researchers had speculated that none may exist for such cells. The discovery of one suggests there may be others.

KIT mutations are found in only a small percentage of melanomas, so Imatinib does not represent a universal treatment for the disease, Hodi explains. Recent studies have found KIT mutations in 11 percent of acral melanomas (which arise in skin without hair follicles, such as that of the palms, foot soles, and nail beds, and account for 5 percent of all melanomas), 21 percent of mucosal melanomas (which arise in the mucous membranes of some organs), and 17 percent of melanomas arising in chronically sun-damaged skin. For patients with these conditions, particularly those who carry a mutation in a particular section of the gene, Imatinib may well prove beneficial.

Imatinib's effectiveness against tumors with KIT mutations was first demonstrated in gastrointestinal stromal tumors (GISTs), a relatively rare malignancy of the digestive tract. An estimated 75-80 percent of GISTs have KIT mutations, and Imatinib has caused such tumors to stabilize or retreat in 75-90 percent of patients receiving it. In most of these patients, however, tumors eventually begin growing again as they become resistant to the drug.

The KIT mutation in the patient described in the study involved a protein-coding section of the gene where DNA was duplicated. This section, known as the "juxtamembrane domain," is the most frequent site of mutation in GIST, and is associated with a strong tumor response to Imatinib.

"Dramatic remissions in metastatic melanoma are something that, as physicians, we've rarely seen," Hodi remarks. "Confirming these results will require enrolling additional patients in clinical trials -- something we're actively working to accomplish."

Bill Schaller | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>