Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New imaging technology promises better breast cancer detection in early stages

25.06.2002


Scientists at the Research & Education Institute at Harbor-UCLA Medical Center (REI) are developing a new breast imaging diagnostic tool which will afford clinicians greater opportunities for detecting early stage breast cancers with greater certainty and help patients avoid biopsy in some cases. This detection method identifies breast lesions utilizing a radiopharmaceutical diagnostic imaging technology known as Tc-99 Sestamibi (MIBI) scintimammography. The procedure is based on a radioactive isotope being injected into a vein in the arm. Once absorbed into the body, the isotope can be seen by a group of special detectors, called gamma cameras, "marking" certain biological processes to locate a tumor.



Iraj Khalkhali, MD, principal investigator at REI, believes that the number of false negative (i.e., missed tumors) readings could be reduced if the limitations of contemporary gamma cameras were overcome. In one of his studies, Dr. Khalkhali found that three out of four false negatives were in the middle part of the breast and out of range of close camera contact. Dr. Khalkhali is currently pursuing research on improving scintimammography image quality through the design and development of a compact, thin gamma camera that affords easier access to all nodes and potential breast lesion sites.

"Access to breast lesions in the internal quadrants is especially important because these tumors may disseminate toward the internal mammary chain even when no axillary node is invaded. Easy access to all nodes and potential breast lesion sites will improve image quality and can be expected to improve the diagnostic accuracy of scintimammography, " said Dr. Khalkhali. "Although mammography is currently the standard early diagnostic screening tool, scintimammography has proven to be a highly effective adjunct in identifying lesions missed by mammography – particularly in women with dense breast tissue, low suspicion lesions on mammograms, pre-menstrual women with lumps in their breasts and women with locally advanced breast cancer," he added.



Dr. Khalkhali has long been recognized as an innovator and pioneer in advancing breast imaging techniques. He is founder and first president of the Nuclear Radiology Section of the Los Angeles Radiological Society. A graduate of the University of Tehran School of Medicine, he served his residency in diagnostic radiology at the Albert Einstein College of Medicine, Bronx, NY, and the University of California, Davis. He is the recipient of the County of Los Angeles Commendation for Excellence in Women’s Health for 2001, winner of the Outstanding and First Place Resident Research Award 1997 for a paper presented on "Detection of Axillary Lymph Node Metastasis of Breast Carcinoma with Technetium 99m Sestamibi Scintimammography", and holds a patent for the scintigraphy guided stereotaxic localization technique of breast tumors.

The Research & Education Institute at Harbor-UCLA Medical Center, located on the campus of Harbor-UCLA Medical Center in Torrance, California, is a leading independent, not-for-profit biomedical research institute with an international reputation for scientific discovery, the training of physician-scientists and the provision of community service programs. It is an affiliate of both the David Geffen School of Medicine at UCLA and the Harbor-UCLA Medical Center and has an annual budget of $58 million. The Institute traces its roots back to 1952, when researchers and physicians joined forces with the UCLA School of Medicine on the campus of what was then known as Harbor General Hospital to conduct a handful of research studies. Today, more than 1,000 research projects and clinical trials are being conducted at REI, advancing scientific understanding in order to improve medical outcomes and promote innovation in such areas as autoimmune disorders, cancer, cardiovascular disease, developmental disorders and other pediatric health problems, diabetes, infectious disease, inherited disorders, male contraception, vaccine evaluation and research, and various aspects of women’s health.


Barbara Kerr | EurekAlert!

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>