Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Typhoid carriers: a Salmonella gene mutation?

25.06.2002
p>
Salmonella enterica causes approximately 16 million cases of typhoid fever worldwide, killing around 500,000 per year. One in thirty of the survivors, however, become carriers, such as Typhoid Mary who caused several typhoid outbreaks in New York City at the beginning of the last century. In carriers the bacteria remain hidden inside cells and the gall bladder, causing new infections as they are shed from an apparently healthy host.



The factors that enable the bacteria to establish chronic infection were unclear. However, in a paper published this week in the Proceedings of the National Academy of Science, researchers at the Institute of Food Research in Norwich and the Karolinska Institute in Sweden found that the change of a single base pair in one Salmonella gene can determine if the bacteria cause short-term illness or a long-term carrier state. The authors stumbled upon the striking change in infectivity while investigating a mutant strain that produces persistent infection in mice.

Tracing the mutation to the genome, the scientists found it caused a single base change in the gene coding for the enzyme polynucleotide phosphorylase (PNPase). This enzyme normally decreases the production of virulence factors by breaking down the messenger RNA essential for the translation of the genetic code into the Salmonella virulence factors. The mutant enzyme is less active, allowing greater production of virulence factors and, therefore, persistent infection.


Dr Jay Hinton of the Institute of Food Research said, “This is a new mechanism for controlling the expression of Salmonella virulence factors, and it’s the first time that this type of gene regulation has been linked with the carrier state of typhoid.”

Jo Belsten | alfa
Further information:
http://www.ifr.bbsrc.ac.uk/Safety/Microarrays/default.html
http://www.mtc.ki.se/groups/rhen/index.htm
http://www.ifr.bbsrc.ac.uk/media/NewsReleases/salmonella.html

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>