Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flu tracked to viral reservoir in tropics

18.04.2008
Each winter, strains of influenza A virus infect North Americans, causing an average of 36,000 deaths. Now, researchers say the virus comes from a viral reservoir somewhere in the tropics, settling a key debate on the source of each season's infection.

"We now know where the influenza A virus comes from every year," said Edward Holmes, professor of biology at Penn State. "And because we now know how the virus evolves, we have a much better chance of controlling it."

Currently, there are many strains of the influenza virus that appear only in birds, which are natural viral reservoirs. So far three of these viral strains -- H1N1, H2N2 and H3N2 – have caused epidemics in humans as influenza A.

Of the three, H3N2 is the dominant strain, responsible for most influenza infections each winter, with lower levels of H1N1. However, little is known about how these two strains spread on a geographical scale, and how whole genome of influenza A virus evolves.

Holmes and his colleagues analyzed complete genomes of 1,032 strains of H1N1 and H3N2 viruses sampled over a 12-year period from New York state in the northern hemisphere and New Zealand in the southern hemisphere.

The researchers noticed that over time, both strains follow a distinctive pattern. In seasons where the H3N2 strain is dominant, H1N1 is not and vice versa.

"We found that the two strains peak at different times, and seem to be directly competing with each other" said Holmes, whose findings appear today online in Nature. The results also indicate that compared to the H3N2 strain, the H1N1 strain exhibits far less genetic diversity, although it is not clear why.

Holmes says his results also show that the influenza A virus is frequently exchanging genes by reassortment – when multiple human influenza viruses infect a single person and shuffle their genes – which sometimes allows the virus to acquire a new haemagglutinin, a protein that facilitates the entry of viral particles into the host cells.

These new haemagglutinins sometimes cause vaccines to fail, explained Holmes, whose work is funded by the National Institutes of Health.

"The critical thing is unless you understand the way the genome evolves, you will not understand why vaccines work during some years and fail during others," he added. "We can now show that vaccines failed in some years because new haemagglutinins appeared."

The Penn State researcher says his analysis not only indicates how the influenza virus is evolving, but also where new strains are being generated.

Each year new strains appear in the northern hemisphere, infect people and then burn out. However, patterns of genetic diversity within the viruses suggest the strains are coming from a global source population. The researchers believe that there must be some reservoir somewhere that every year generates new strains that are injected each season into the north and the south, and then burn themselves out.

"We know the strains are dying out every year in the northern and southern hemispheres. So they're surviving somewhere else, and we think it is a reservoir in the tropics," Holmes said. "It tells us that to really understand how the influenza virus evolves on a seasonal basis, and to make the best vaccine, we need to focus our surveillance on the source population in the tropics, especially in places such as Southeast Asia."

Amitabh Avasthi | EurekAlert!
Further information:
http://www.psu.edu

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>