Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2 new therapies show promise for cancer patients

17.04.2008
Clinical trial data and cutting-edge testing give key insights in the fight against basal cell carcinoma and pancreatic cancer

Clinical researchers at Scottsdale Healthcare and TGen today announced the results of two clinical trials that show promise for patients battling cancer.

The Phase I clinical trial findings, presented at the this weeks Annual Meeting of the American Association for Cancer Research by Daniel Von Hoff, MD, FACG, focused on basal cell carcinoma (BCC) and pancreatic cancer. The Arizona trials were conducted at TGen's Clinical Research Service (TCRS) at Scottsdale Healthcare, a strategic alliance between TGen and Scottsdale Healthcare’s Clinical Research Institute.

Basal Cell Carcinoma

In the first trial, a novel molecule, GDC-0449, shrinks tumors in basal cell carcinoma (BCC) while having limited side effects, including a loss of sense of taste, and a small amount of hair loss and weight loss, suggesting a viable new treatment option. GDC-0449 works by blocking a pathway — a series of chemical reactions within a cell— known as Hedgehog, containing two genes (PTCH and SMO) that lead to a known tumor-promoting gene called GLI1. Alterations in any of these genes have been shown to lead to basal cell carcinoma and other diseases. GDC-0449 is a chemical synthetic designed to replicate the properties of cyclopamine, a chemical found in nature.

“Basal cell carcinoma affects about one million people a year and a proportion of these patients have disease that is not curable with surgery. We currently do not have any treatments that can effectively slow tumor growth in these advanced patients. This finding has potential importance in this population,” said Daniel D. Von Hoff, M.D., Physician in Chief at the Translational Genomics Research Institute (TGen) and Chief Medical Officer for the Scottsdale Clinical Research Institute at Scottsdale Healthcare.

Typically diagnosed with a simple biopsy, the risk of BCC increases for those individuals with a family history, or prolonged exposure to ultraviolet (or UV) rays from the sun. While BCC has an extremely low rate of metastasis, it can lead to scarring and disfigurement if left untreated.

The trial results showed durable clinical benefit —defined as tumor shrinkage visible on X-ray or other physical exam or improvement in symptoms without tumor growth— was observed in eight out of the nine patients evaluated.

The first patient treated in the trial has shown clinical improvement for approximately 450 days and is ongoing, Von Hoff says, with almost no side effects beyond minimal hair loss.

“He came to us short of breath and in pain, but he has had a very dramatic response with this drug,” Von Hoff said.

Further evaluations of the study participants measured the presence of GLI1 in skin cells sampled from the participants. Among all patients tested to date, there was reduction in this marker, indicating that the drug was affecting the hedgehog pathway.

The trial, sponsored by Genentech, also included clinical sites at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland and Karmanos Cancer Institute, Detroit, Michigan.

Pancreatic Cancer

In the second trial, Von Hoff and colleagues showed that a novel combination of two drugs (nanoparticle albumin-bound paclitaxel, or “nab-pacilitaxel” and gemcitabine) showed a significant clinical benefit in more than 80 percent of pancreatic cancer patients.

“Unfortunately, most patients with pancreatic cancer have a very poor survival, and until now, the only option has been gemcitabine alone or in combination with erlotinib,” said Von Hoff.

The researchers utilized the Target Now™ tumor profiling analysis, a cutting-edge oncology testing service performed by Caris Dx and Caris MPI, to better understand the characteristics expressed in patient’s tumors. In this ongoing research program, Von Hoff and colleagues found the SPARC (Secreted Protein Acidic and Rich in Cysteine) protein to be commonly found in pancreatic cancer specimens. The SPARC protein is being investigated by Abraxis BioScience in this trial as a potential target for nab-paclitaxel. A test for SPARC, developed at Abraxis and Caris MPI and applied by Caris MPI under contract with Abraxis, was utilized to analyze SPARC in the pancreatic cancer patients in the trial.

The finding of SPARC protein in pancreatic cancer patients, also described by other investigators, was the basis for this phase I clinical trial that Von Hoff presented at AACR.

“Chemotherapy often means combining more than one drug, and we do not want to just take the next thing off the shelf. We want to know as much about a tumor as possible going in,” Von Hoff said.

Researchers reported on the first 20 patients of what will eventually be a 42-patient trial.

“This was a phase I trial, and phase I trials are usually designed to test safety, hoping it will also determine efficacy. The fact that we saw this kind of activity in a phase I trial is dramatic,” Von Hoff said.

“The rationale behind the combination of Gemcitabine plus Abraxane was based on careful science and was designed and executed by some of the leading experts in pancreas cancer in the world. While the data is preliminary and longer follow-up will be important, the biochemical and radiographic responses look very encouraging”, says Dr. Laheru of Johns Hopkins Kimmel Cancer Center.

The trial, sponsored by Abraxis BioScience, also included clinical sites at South Texas Oncology and Hematology, P.A., San Antonio, Texas, University of Alabama at Birmingham, Birmingham, Alabama, and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland.

About Abraxis BioScience

Abraxis BioScience is a fully integrated global biotechnology company dedicated to the discovery, development and delivery of next-generation therapeutics and core technologies that offer patients safer and more effective treatments for cancer and other critical illnesses. The company's portfolio includes the world's first and only protein-bound nanoparticle chemotherapeutic compound (ABRAXANE), which is based on the company's proprietary tumor targeting technology known as the nab™ platform. The first FDA approved product to use this nab™ platform, ABRAXANE, was launched in 2005 for the treatment of metastatic breast cancer. Abraxis trades on the NASDAQ Global Market under the symbol ABBI. For more information about the company and its products, please visit www.abraxisbio.com.

About Caris

Caris Dx provides world-class surgical pathology services to physicians who treat patients in an ambulatory setting. The company provides academic-caliber medical consults through its industry-leading team of subspecialty fellowship and expert-trained pathologists in gastrointestinal and liver pathology, hematopathology and dermatopathology. Caris Diagnostics provides the highest levels of service to its customers and their patients through its state-of-the-art laboratories; proprietary, advanced clinical and technology solutions; and rigorous quality assurance programs.

Caris MPI is a leading molecular diagnostic company that provides world-class genomic and proteomic analysis in the field of oncology and other complex diseases. Caris MPI translates the latest discoveries made in the research lab to patient care. Furthermore, the Tissue Banking and Analysis Center (TBAC) at Caris MPI assists pharmaceutical companies and researchers in their clinical trials for tissue procurement, preservation of key analytes for cutting edge genomic and proteomic analysis and reporting by CMPI.

About Scottsdale Healthcare

Scottsdale Healthcare's vision is Setting the Standard for Excellence in Personalized Healthcare. Established in 1962, Scottsdale Healthcare is the not-for-profit parent organization of the Scottsdale Healthcare Osborn, Scottsdale Healthcare Shea and Scottsdale Healthcare Thompson Peak hospitals, Virginia G. Piper Cancer Center, Scottsdale Clinical Research Institute, Scottsdale Healthcare Home Health Services and Scottsdale Healthcare Community Health Services. Based in Scottsdale, Arizona, Scottsdale Healthcare is governed by a volunteer board of directors composed of leading local citizens. www.shc.org

About TGen

The Translational Genomics Research Institute (TGen) is a non-profit 501(c)(3) organization dedicated to conducting groundbreaking research with life changing results. Research at TGen is focused on helping patients with diseases such as cancer, neurological disorders and diabetes. TGen is on the cutting edge of translational research where investigators are able to unravel the genetic components of common and complex diseases. Working with collaborators in the scientific and medical communities, TGen believes it can make a substantial contribution to the efficiency and effectiveness of the translational process. TGen's vision is of a world where an understanding of genomic variation can be rapidly translated in a manner tailored to individual patients. For more information about TGen, please visit www.tgen.org.

Galen Perry | EurekAlert!
Further information:
http://www.tgen.org

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>