Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new animal model for Machado Joseph disease involves yet another brain area in the disorder

14.04.2008
Gabinete de Planeamento, Estratégia, Avaliação e Relações Internacionais / Ministério da Ciência, Tecnologia e Ensino Superior

Machado Joseph disease (MJD) is a neurodegenerative disorder associated with deposits of an aberrant form of the protein ataxin-3 in the brain. The disease is also fatal and the most common hereditary motor neurodegenerative disease in many countries.

Despite this, not much is known about MJD including the neurological basis of some of its symptoms, which cannot be linked to the brain damage found in patients. But now, researchers in Portugal and France using a new animal model of the disease were able to show, for the first time, that MJD also affects the striatum, a brain area associated with movement and balance control. These new findings, just published as advance online publication in the journal Human Molecular Genetics, finally clarify the cause of previously unexplained symptoms, such as muscle twisting and abrupt dance-like movements of the limbs.

The research helps to understand better a still incurable pathology while also providing a new animal model to study the disease as well as potential treatments.

MJD, also called spinocerebellar ataxia type 3, belongs to a group of disorders linked to an abnormal repetition of three nucleotides (nucleotides are the DNA building blocks) within a gene. The altered gene produces an abnormal protein, which, incapable of working properly, accumulates instead in insoluble deposits in the patients’ brain and is linked to the neural death characteristic of these disorders.

In MJD the pathology results from a mutation in the MJD1 gene that encodes a protein called ataxin-3. The name Machado-Joseph comes from two families of Portuguese/Azorean descent who were the first patients identified and, today, disease prevalence is still highest among people with a link to Azores. In fact, disease incidence among immigrants of Portuguese ancestry in New England is 1 in 4,000 while in the Azores island, Flores is even higher - 1 in 140. Symptoms include increasing limb weakness (ataxia means lack of muscle control) and widespread clumsiness, difficulty with speech and a general loss of motor control that eventually confines the patient to a wheelchair and, in most severe cases, leads to premature death. Although the disease has been discovered in the 1970s much is still unknown including its cause and also the reason behind many of its symptoms as they do not seem to relate to the brain areas damaged by the disease.

In order to better understand this and because animal models that mimic closely the pathology are necessary Sandro Alves, Nicole Déglon, Luis Pereira de Almeida and colleagues working at the University of Coimbra, Coimbra, Portugal, and the Institute of Biomedical Imaging (I2BM) and Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France together with others in Switzerland and the USA created a virus that contained in its genome the gene for the mutant form of ataxin-3 and injected it into rats .

The idea was that the virus injected into the rat brain, when inserted into the DNA of the infected cells, would also add the mutant ataxin-3 gene. As result, infected cells would produce mutant ataxin-3 and (hopefully) reproduce a MJD-like disease in these animals that could then be studied.

When injecting the altered virus Alves, Almeida and colleagues chose three different brain areas: the substantia nigra, which was known to be affected by MJD in humans so it could serve as positive control for neurodegeneration - but also the cortex and the striatum areas of the brain, which recent imaging techniques have suggested to be linked to MJD. Control rats were injected with a virus that contained DNA for a normal (no-mutated) version of ataxin-3.

Injection of mutated ataxin-3 into the rats’ substantia nigra replicated some of the motor dysfunction of MJD as well as induced brain degeneration and deposits of mutant protein within the injected area. Mutant ataxin-3 deposits in MJD patients are characteristically insoluble fibrillar structures localised inside of the cell nucleus. In agreement with this the deposits found in the rats’ substantia nigra were insoluble, also localised in the nucleus, and of high molecular weight. Supporting the specificity of this new MJD model animals injected with a virus containing the normal form of ataxin-3 showed even distribution of the protein throughout the cell and no neural death..

When it was established that Alves, Almeida and colleagues’ protocol created a valid animal model for MJD the next step was to inject the virus with mutant or normal proteins into the cortex or the striatum of the rats. The idea was to look for MJD-like behavioural and neurologic symptoms in these animals suggesting an involvement of these areas in MJD. Interestingly, although animals injected in the cortex showed deposits of mutant ataxin3 there was almost no neurodegeration detected. Rats injected in the striatum, however, were very different as they had insoluble mutant ataxin-3 deposits and clear indication of neural changes around these deposits. Most interestingly, the amount of neural dysfunction observed was directly linked to the amount of mutant ataxin-3 gene injected (so dose-dependent) supporting the toxic role of this protein in the disease.

To further confirm that the striatum degeneration was characteristic of MJD the researchers decided to look into the striatum tissues of deceased MJD patient and of a mice model of MJD where animals are genetically modified to produce mutant ataxin-3 throughout the brain. In both cases it was found deposits of mutant ataxin-3 and signs of neuropathology within the striatal tissue.

Sandro Alves, Luis Pereira de Almeida and colleagues’ results finally explain why MJD patients suffer so many times from tightening and twisting of the limb and, although less frequently, of abrupt irregular movements since both motor problems can now be explained by a disruption of the neurological paths in the striatum, a brain area connected to balance and movement. The work also provides a new genetic model to study the disease and possible therapeutic approaches to combat it.

Catarina Amorim | alfa
Further information:
http://hmg.oxfordjournals.org/cgi/content/abstract/ddn106v2

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>