Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugar on the brain: Study shows sugar dependence in rats

21.06.2002


Denied sugar, bingeing rats suffered withdrawal



It’s a common refrain: "I’m addicted to sugar." Now a study by Princeton University psychologists suggests that such urges really may be a form of addiction, sharing some of the physiological characteristics of drug dependence.

Although the term "sugar addiction" often appears in magazines and on television, scientists had not demonstrated that such a thing as sugar dependency really exists, said neuroscientist Bart Hoebel, who led the study. Hoebel and colleagues studied rats that were induced to binge on sugar and found that they exhibited telltale signs of withdrawal, including "the shakes" and changes in brain chemistry, when the effects of the sweets were blocked. These signs are similar to those produced by drug withdrawal.


Sugar, said Hoebel, triggers production of the brain’s natural opioids. "We think that is a key to the addiction process," he said. "The brain is getting addicted to its own opioids as it would to morphine or heroin. Drugs give a bigger effect, but it is essentially the same process."

Hoebel emphasized that there are more elements to addiction than bingeing and withdrawal, and that further studies will be needed to complete the picture. Also, it is not clear how closely the findings might apply to humans, he said.

The greatest value of the research, Hoebel said, is that it provides an animal model of sugar dependency, allowing scientists to probe more deeply the connections between food cravings and brain physiology.

As far as the plight of the many people who feel powerless in the face of sugar, it also is not clear how the findings will help, he noted. "Unfortunately, it’s very difficult to treat addictions," he said. "But it does change the way the person might look at it. It puts it in the realm of an addictive disorder rather than a failure of willpower."

Hoebel’s research was published in the June issue of Obesity Research. His co-authors are former undergraduates Carlo Colantuoni, Joseph McCarthy, Caroline Patten and Andrew Chadeayne, visiting researcher Pedro Rada and graduate student Nicole Avena.

"I think the results are interesting and exciting and provide a new way of looking at overeating," said Harry Kissileff, a psychologist and specialist in human food intake at Columbia University. Kissileff agreed that Hoebel’s rats offer an important model system, but said he would be cautious about using them to put sugar in the same category as drugs.

"There is some overlap between the systems that control food intake and addiction," Kissileff said. "I am not sure they necessarily make food addictive."

In their experiments, Hoebel and colleagues in his lab started rats on a pattern of bingeing by withholding food for 12 hours when the rats were sleeping and through breakfast time, then giving them nutritionally balanced food plus sugar water. The animals gradually increased their daily sugar intake until it doubled, consuming most of it in the first hour it was available.

When the researchers suddenly removed the sugar portion of the rats’ diet, the animals exhibited teeth chattering, a common sign of withdrawal. For some animals, the researchers removed the sugar and also administered a dose of a drug that blocks the opioid receptors in the brain. In addition to teeth chattering, those animals showed anxiety and a reversal in the usual balance of neurochemicals in the brain’s motivation system.

Animals that binged on normal food with no sugar and received the opioid blocker did not show these withdrawal signs. Animals that were given a steady diet of food and sugar water without binging also did not show signs of withdrawal.

"The implication," said Hoebel, "is that some animals, and some people, can become overly dependent on sweet food, particularly if they periodically stop eating and then binge. This may relate to eating disorders such as bulimia."

Hoebel noted that his rats should be termed "sugar-dependent" rather than addicted, because he has not yet proven that they exhibit all the elements that make up the definition of addiction, which is three-fold: a behavioral pattern of increased intake and changes in brain chemistry; then signs of withdrawal and further changes in brain chemistry upon deprivation; and third, signs of craving and relapse after withdrawal is over. Experiments in Hoebel’s lab so far have shown the first two points, while ongoing experiments are investigating craving and relapse in the rats.

Steven Schultz | EurekAlert!

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

Researcher creates a controlled rogue wave in realistic oceanic conditions

30.09.2016 | Earth Sciences

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

Spiral arms: not just in galaxies

30.09.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>