Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can micro-scaffolding help stem cells rebuild the brain after stroke

11.04.2008
Inserting tiny scaffolding into the brain could dramatically reduce damage caused by strokes the UK National Stem Cell Network Annual Science Meeting will hear today.

With funding from the Biotechnology and Biological Sciences Research Council (BBSRC) neurobiologists from the Institute of Psychiatry and tissue engineers from The University of Nottingham have joined forces to tackle the challenge of tissue loss as a result of stroke.

Speaking at the conference in Edinburgh, Dr Mike Modo from the Institute of Psychiatry will explain how combining scaffold microparticles with neural stem cells (NSCs) could regenerate lost brain tissue.

Strokes cause temporary loss of blood supply to the brain which results in areas of brain tissue dying — causing loss of bodily functions such as speech and movement. Neural Stem Cells offer exciting possibilities for tissue regeneration, but there are currently major limitations in delivering these cells to the brain. And while NSC transplantation has been proven to improve functional outcomes in rats with stroke damage little reduction in lesion volume has been observed.

The research is being carried out by Dr Mike Modo and Professor Jack Price from the Institute of Psychiatry and Professor Kevin Shakesheff from The University of Nottingham.

Their findings are being presented at the UK National Stem Cell Network Inaugural Science Meeting at the Edinburgh Conference Centre on 10 April 2008. The conference is a showcase of the best and latest UK stem cell science across all stem cell disciplines.

Working with rats, Dr Modo and his team are developing cell-scaffold combinations that could be injected into the brain to provide a framework inside the cavities caused by stroke so that the cells are held there until they can work their way to connect with surrounding healthy tissue.

Dr Modo explains: "We propose that using scaffold particles could support NSCs in the cavity to re-form the lost tissue and provide a more complete functional repair. The ultimate aim is to establish if this approach can provide a more efficient and effective repair process in stroke."

Kevin Shakesheff, Director of The University of Nottingham's new £25m Centre for Biomolecular Sciences and Professor of Tissue Engineering in the School of Pharmacy, said: “Within the body our cells function within tightly controlled 3D architectures. Our scaffolds can recreate some of the architectural features and thereby protect the cells and help them to integrate and function."

The team hope their work will pave the way for NSCs to be successfully used in clinical settings to re-develop parts of the brain damaged by stroke and neurodegenerative diseases.

Emma Thorne | alfa
Further information:
http://www.bbsrc.ac.uk
http://www.nottingham.ac.uk

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>