Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Can micro-scaffolding help stem cells rebuild the brain after stroke

Inserting tiny scaffolding into the brain could dramatically reduce damage caused by strokes the UK National Stem Cell Network Annual Science Meeting will hear today.

With funding from the Biotechnology and Biological Sciences Research Council (BBSRC) neurobiologists from the Institute of Psychiatry and tissue engineers from The University of Nottingham have joined forces to tackle the challenge of tissue loss as a result of stroke.

Speaking at the conference in Edinburgh, Dr Mike Modo from the Institute of Psychiatry will explain how combining scaffold microparticles with neural stem cells (NSCs) could regenerate lost brain tissue.

Strokes cause temporary loss of blood supply to the brain which results in areas of brain tissue dying — causing loss of bodily functions such as speech and movement. Neural Stem Cells offer exciting possibilities for tissue regeneration, but there are currently major limitations in delivering these cells to the brain. And while NSC transplantation has been proven to improve functional outcomes in rats with stroke damage little reduction in lesion volume has been observed.

The research is being carried out by Dr Mike Modo and Professor Jack Price from the Institute of Psychiatry and Professor Kevin Shakesheff from The University of Nottingham.

Their findings are being presented at the UK National Stem Cell Network Inaugural Science Meeting at the Edinburgh Conference Centre on 10 April 2008. The conference is a showcase of the best and latest UK stem cell science across all stem cell disciplines.

Working with rats, Dr Modo and his team are developing cell-scaffold combinations that could be injected into the brain to provide a framework inside the cavities caused by stroke so that the cells are held there until they can work their way to connect with surrounding healthy tissue.

Dr Modo explains: "We propose that using scaffold particles could support NSCs in the cavity to re-form the lost tissue and provide a more complete functional repair. The ultimate aim is to establish if this approach can provide a more efficient and effective repair process in stroke."

Kevin Shakesheff, Director of The University of Nottingham's new £25m Centre for Biomolecular Sciences and Professor of Tissue Engineering in the School of Pharmacy, said: “Within the body our cells function within tightly controlled 3D architectures. Our scaffolds can recreate some of the architectural features and thereby protect the cells and help them to integrate and function."

The team hope their work will pave the way for NSCs to be successfully used in clinical settings to re-develop parts of the brain damaged by stroke and neurodegenerative diseases.

Emma Thorne | alfa
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>