Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene expression profiles predict survival of lymphoma patients after chemotherapy

20.06.2002


Patterns of genes that are active in tumor cells can predict whether patients with diffuse large B-cell lymphoma (DLBCL) are likely to be cured by chemotherapy, scientists reported today in the New England Journal of Medicine.

Researchers analyzed thousands of genes in lymphoma biopsy samples from patients with DLBCL and determined that the activity of as few as 17 genes could be used to predict patients’ response to treatment. "We’re able to reliably predict the survival of these patients using data from a small number of genes, indicating that this technique should be entirely manageable for routine use," said National Cancer Institute (NCI) investigator Louis M. Staudt, M.D, Ph.D., the senior author on the study.

DLBCL is the most common type of non-Hodgkin’s lymphoma in adults. Approximately 16,000 new cases are diagnosed in the United States each year, and standard chemotherapy for the disease is effective in only 40 percent of patients. Profiling gene expression in patients’ tumors may help clinicians decide which patients are suitable candidates for standard therapy and which should consider other options for treatment.



The discovery of the predictive genes relied on DNA microarray technology, which allows researchers to determine which genes are active within cells. Microarrays, also known as gene chips, are glass slides that have been coated with thousands of spots of DNA, each representing a different gene. When a gene is active in a cell, it produces RNA copies known as transcripts. To measure the activity of genes, researchers use the RNA transcripts to make a fluorescent gene probe. When these gene probes are allowed to bind to their corresponding DNA spot on the chip, those spots on the chip light up. Scientists use the pattern and intensity of light emitted to determine the activity of each of the chip’s thousands of genes.

For this study, researchers used the Lymphochip, a specialized microarray containing 12,000 DNA spots representing genes expressed in normal and malignant lymphoid cells. Developed as part of the NCI’s Cancer Genome Anatomy Project, the Lymphochip is particularly useful for finding differences in gene expression among lymphoid cancers.

Staudt and his colleagues profiled gene expression in 240 tumor biopsies from patients with DLBCL and identified more than 600 genes whose expression varied significantly between patients who had responded well to treatment and those whose response was poor. These genes highlight aspects of the tumors that affected response to therapy, including how fast tumor cells were dividing and from what type of normal lymphocyte (a type of white blood cell) the tumor originated. Many of the predictive genes suggest that a patient’s immune response to the tumor is important for achieving a cure with chemotherapy.

Focusing on genes where the difference in expression was most dramatic between the two groups of patients, researchers narrowed the key genes down to 17. From these genes, the investigators created a formula that could be used to predict survival following chemotherapy. This predictor classified the patients into four groups of equal size. The five-year survival rates for these groups were 73 percent, 71 percent, 34 percent, and 15 percent.

Currently, physicians rely on the International Prognostic Index (IPI) to evaluate patients with DLBCL. This predictive index is based on clinical factors including age, stage of the tumor, and the presence of disease that has spread outside the point of origin. While useful for some purposes, Staudt noted that the IPI has not been successful in identifying the best candidates for alternate therapies. "Based on variations in gene expression, we can now do a better job of predicting patient outcomes," he said.

As an example, Staudt explained that 32 of the 240 patients in this study were classified in the group with the poorest prognosis according to the IPI. Of these, four were in fact cured by standard chemotherapy. Gene expression profiling successfully identified each of these.

For those that don’t respond to chemotherapy, alternatives are available. "For half of the patients with diffuse large B-cell lymphoma, conventional chemotherapy appears to be a reasonable option, but for patients in the poor-risk group, we have to consider other therapies," Staudt said. One possibility for some patients would be a bone marrow transplant. There are also numerous clinical trials for which these patients may be eligible.

One option is PS-341, a new agent that targets a pathway in the cell that blocks chemotherapy. Gene expression profiling revealed that in DLBCL patients who do not respond well to standard chemotherapy, lymphoma cells have activated this pathway, known as NF-kB. Based on these results, a Phase II clinical trial of PS-341 along with standard chemotherapeutic agents is planned to begin later this year at NCI and other institutions. Blocking the NF-kB signaling pathway with PS-341 will allow DLBCL tumor cells to die more readily, which researchers hope will improve patient survival. This trial will enroll DLBCL patients who have relapsed after standard chemotherapy. Gene expression profiles of the patients’ tumors will be determined prior to treatment to understand which patients respond best to this new regimen.

Trials designed to correlate clinical results with molecular data will allow researchers to identify drugs that are effective in subgroups of cancer patients, an approach that has already proven effective in finding new agents to treat breast cancer and leukemia. Staudt said gene profiling will make it possible to obtain more information from clinical trials in the future. "It makes sense to get the maximum amount of information from patients’ valuable participation in clinical trials," he said. "It’s a better investment in the research for both doctors and patients."


This research was sponsored by NCI as part of the Lymphoma/Leukemia Molecular Profiling Project and the NCI Director’s Challenge. The participating institutions included the University of Nebraska Medical Center, Omaha; the British Columbia Cancer Agency, Vancouver; the Norwegian Radium Hospital, Oslo; the University of Wuerzburg, Germany; the University of Barcelona, Spain; the Southwest Oncology Group; and the NCI Center for Cancer Research, Bethesda, Md.

NCI Press Office | EurekAlert!
Further information:
http://cancer.gov/clinical_trials/
http://www.cancer.gov

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>