Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hepatitis B virus triggers cell ‘suicide’ in patients with chronic infection

09.04.2008
Scientists from UCL (University College London) have identified a key difference between people who can fight the Hepatitis B virus (HBV) off successfully and those who fail to do so – that a group of cells important in controlling the disease are triggered to ‘commit suicide’ in patients who are chronically infected. This discovery provides an important new focus for developing therapies or vaccines that boost the body’s ability to manage this infection.

The researchers analysed thousands of genes in T cells, critical players of the immune system required for control of HBV. They found that T cells from patients who were chronically infected were triggered to ‘commit suicide’. This could be an important factor in determining why these patients’ immune systems cannot fight the infection, and a process which could be a useful target for new treatments. Their findings are published today in the Journal of Clinical Investigation.

Hepatitis B virus (HBV) is one of the most common viruses in the world, and ranks as one of the top ten killer infectious diseases. More than 350 million people have long-term infection with HBV, which may lead to liver cirrhosis, liver failure or liver cancer. In the majority of adults infected, the immune system is able to control the virus very well and is, in fact, more effective than any currently available treatment. Understanding what goes wrong in people with chronic infection is crucial to the development of new therapies.

Lead author, Dr Mala Maini, UCL Division of Infection & Immunity, said: “We used microarray gene chips to screen more than 5,000 genes in T cells from both recovered and chronically infected Hepatitis B patients. This led to the discovery that, instead of successfully reacting to the virus, the T cells in the latter group were triggered to commit suicide by one of the cells’ own death-inducing proteins, called ‘Bim’. We are now looking into the fine mechanism driving this outcome.”

The paper’s first author, Ross Lopes, added: “If we can develop safe ways of blocking the suicidal tendency of the T cells, we may be able to prolong their survival, so they can do a better job of controlling Hepatitis B infection.”

The proportion of the world's population currently infected with HBV is estimated at between 3 and 6 per cent, but up to a third have been exposed. It is endemic in parts of Asia and Africa. Chronic Hepatitis B may eventually cause liver cirrhosis and liver cancer, a fatal disease with very poor response to current treatments. The infection is preventable by vaccination at a young age.

Ruth Metcalfe | alfa
Further information:
http://www.ucl.ac.uk

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>