Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reconstructing mandibular defects with bioengineered tooth and bone

08.04.2008
Current strategies for jaw reconstruction require multiple procedures, first to repair the bone defect to offer sufficient support, and then to place the tooth implant.

The entire procedure can be painful and time-consuming, and the desired esthetic and functional repair can be achieved only when both steps are successful. Although the patient’s quality of life can be improved significantly, the prognosis is often unpredictable, especially in young patients, whose jaws continue to grow, while the implant remains fixed.

The ability to bioengineer combined tooth and bone constructs, which would grow in a coordinated fashion with the surrounding tissues, could potentially improve the clinical outcomes, and also reduce patient suffering.

Under the guidance of Dr. Pamela C. Yelick, a research team at Tufts University (Boston, MA) has examined the feasibility of simultaneously reconstructing both teeth and bone. In 2002, the group first reported the regeneration of tooth crowns, from cultured tooth bud cells seeded onto biodegradable scaffolds and implanted into rat hosts. The morphology of the developing tissue-engineered tooth crowns closely resembled that of naturally formed teeth.

Next, they generated a hybrid tooth-bone construct, by combining a bone-marrow-derived stem-cell-seeded scaffold with the previously used tooth model, implanted and grown in the omenta (tissues connecting abdominal structures) of rat hosts. In this case, the formation of not only the tooth crowns but also tooth root and surrounding alveolar bone was observed. However, since the omentum offers an environment quite distinct from that of the natural tooth site, the jawbone, the team examined hybrid tooth-bone construct development using third molar tooth bud cells and bone marrow derived from, and implanted back into, the same minipig.

Their results showed the formation of organized bioengineered dental tissues closely resembling those of naturally formed teeth, including dentin, enamel, pulp, and periodontal ligament, after 12 weeks of implantation. Further analyses confirmed the expression of tooth- and bone-specific markers on the bioengineered tissues. In addition, they observed novel mineralized tissue interface formation, including enamel/bone and dentin/bone interfaces. These results demonstrate the feasibility and therapeutic potential for regenerating tooth and bone from autologous stem cells, for craniofacial reconstructions in humans. This model is currently being modified to improve alveolar bone formation, regenerated dental tissue orientation, tooth root development, and tooth eruption.

Linda Hemphill | EurekAlert!
Further information:
http://www.iadr.org

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>