Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reconstructing mandibular defects with bioengineered tooth and bone

08.04.2008
Current strategies for jaw reconstruction require multiple procedures, first to repair the bone defect to offer sufficient support, and then to place the tooth implant.

The entire procedure can be painful and time-consuming, and the desired esthetic and functional repair can be achieved only when both steps are successful. Although the patient’s quality of life can be improved significantly, the prognosis is often unpredictable, especially in young patients, whose jaws continue to grow, while the implant remains fixed.

The ability to bioengineer combined tooth and bone constructs, which would grow in a coordinated fashion with the surrounding tissues, could potentially improve the clinical outcomes, and also reduce patient suffering.

Under the guidance of Dr. Pamela C. Yelick, a research team at Tufts University (Boston, MA) has examined the feasibility of simultaneously reconstructing both teeth and bone. In 2002, the group first reported the regeneration of tooth crowns, from cultured tooth bud cells seeded onto biodegradable scaffolds and implanted into rat hosts. The morphology of the developing tissue-engineered tooth crowns closely resembled that of naturally formed teeth.

Next, they generated a hybrid tooth-bone construct, by combining a bone-marrow-derived stem-cell-seeded scaffold with the previously used tooth model, implanted and grown in the omenta (tissues connecting abdominal structures) of rat hosts. In this case, the formation of not only the tooth crowns but also tooth root and surrounding alveolar bone was observed. However, since the omentum offers an environment quite distinct from that of the natural tooth site, the jawbone, the team examined hybrid tooth-bone construct development using third molar tooth bud cells and bone marrow derived from, and implanted back into, the same minipig.

Their results showed the formation of organized bioengineered dental tissues closely resembling those of naturally formed teeth, including dentin, enamel, pulp, and periodontal ligament, after 12 weeks of implantation. Further analyses confirmed the expression of tooth- and bone-specific markers on the bioengineered tissues. In addition, they observed novel mineralized tissue interface formation, including enamel/bone and dentin/bone interfaces. These results demonstrate the feasibility and therapeutic potential for regenerating tooth and bone from autologous stem cells, for craniofacial reconstructions in humans. This model is currently being modified to improve alveolar bone formation, regenerated dental tissue orientation, tooth root development, and tooth eruption.

Linda Hemphill | EurekAlert!
Further information:
http://www.iadr.org

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>