Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

T-Cadherin Affects Blood Vessel Growth in Breast Cancer, Hormone from Fat Cells May Play a Role

08.04.2008
Researchers at the Burnham Institute for Medical Research (Burnham) may have found a new option for targeted breast cancer therapy by showing the link between a certain protein and the formation and development of blood vessels that feed breast tumors.

Like mortar between bricks in a wall, T-cadherin is a protein that helps cells stick together and collectively form tissues. Cancer cells that loosen their adhesive tissue bonds stop producing T-cadherin, and in tumors, only the blood vessels that supply oxygen and nutrients express this protein.

Now, Barbara Ranscht, Ph.D., and Robert Oshima, Ph.D., at Burnham have led a team that developed the first living model to study this protein’s effect on tumor angiogenesis by creating a strain of mice that develops spontaneous mammary gland tumors in the absence of T-cadherin. Their results appeared March 1 in Cancer Research.

“Evidence of T-cadherin’s role in vascularization has been somewhat controversial,” explains Dr. Ranscht, senior author of the study, which includes Drs. Lionel Hebbard and Michèle Garlatti from the Burnham Institute as equally contributing first authors and Drs. Robert Cardiff and Lawrence Young as collaborators from the University of California, Davis. “But our knockout model clearly shows that T-cadherin plays a role in promoting tumor vascularization, with implications for tumor growth and animal survival.”

The tumor model developed in Dr. Ranscht’s laboratory shows that loss of T-cadherin slows down tumor growth and improves survival compared to controls where T-cadherin is present: The absence of T-cadherin delays tumor growth by an average of 10 days, decreases tumor size, and apoptosis markers, indicators of cell suicide, are six times higher. The tumor-bearing knockouts live an average of 18.5 days longer than their wild-type counterparts, which translates into approximately 18 months of human life span.

The normal models in the study developed solid adenocarcinoma breast tumors, whereas the knockouts formed poorly-differentiated breast tumors with fewer blood vessels. When the adenocarcinoma tumors were transplanted into normal and T-cadherin-deficient mammary glands the knockouts were deficient in growing new blood vessels to the graft.

Stunting blood vessel growth restricts tumors and prolongs survival—a strategy behind anti-angiogenesis cancer drugs like Avastin—so these results were somewhat expected, says Dr. Ranscht. “But what surprised us,” she adds, “was that even though our models survived longer, their tumor pathology worsened.” Without T-cadherin-mediated vascularization, breast cancer cells consistently metastasized to the lungs, and this did not happen in the control mice where the tumors were highly vascularized.

The reasons for this trend are not clear: loose connections between vascular cells may make it easier for tumor cells to break off and enter the blood stream, or low blood flow and oxygen levels in the tumor environment may cause free radicals to build up, spurring further mutations and malignancy.

Either way, says Dr. Ranscht, “Our work provides a cautionary example that restricting tumor angiogenesis might result in more aggressive disease in the long run. Thus, anti-angiogenic therapies should be carefully evaluated, because if growth at the primary tumor site slows but at the same time women develop more aggressive, metastatic cancers, then it is imperative to develop and add treatments that prevent this.”

This study also showed for the first time in a living model that T-cadherin is essential for binding adiponectin, a hormone produced by fatty tissue that is released in inversely proportional amounts to body fat. Adiponectin has a protective effect against metabolic diseases including diabetes, hypertension, heart disease, and stroke; now for the first time it is linked in a living model with vascular function, a relationship that the Burnham team is still exploring. “While the link between obesity and breast cancer is complex, this study shows that in the mouse, T-cadherin sequesters much of the adiponectin and thus provides a conceptual link between obesity and breast cancer” notes Dr. Oshima.

This research is supported by grants from the National Institutes of Health and the Department of Defense.

About Burnham Institute for Medical Research
Burnham Institute for Medical Research uses an entrepreneurial, collaborative approach to medical research to reveal the fundamental molecular causes of disease and devise the innovative therapies of tomorrow. The Institute is organized into five research centers: a National Cancer Institute-designated Cancer Center; the Del E. Webb Center for Neurosciences, Aging and Stem Cell Research; an Infectious and Inflammatory Disease Research Center; a Diabetes and Obesity Research Center; and the Sanford Children’s Health Research Center. Thanks to the quality of its faculty members, Burnham ranks among the top 25 organizations worldwide (according to the Institute for Scientific Information) for its research impact and among the top four research institutes nationally for NIH grant funding. Burnham is a nonprofit, public benefit corporation headquartered in La Jolla, California, with campuses in Orlando, Florida and Santa Barbara, California.

Andrea Moser | EurekAlert!
Further information:
http://www.burnham.org

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>