Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

T-Cadherin Affects Blood Vessel Growth in Breast Cancer, Hormone from Fat Cells May Play a Role

08.04.2008
Researchers at the Burnham Institute for Medical Research (Burnham) may have found a new option for targeted breast cancer therapy by showing the link between a certain protein and the formation and development of blood vessels that feed breast tumors.

Like mortar between bricks in a wall, T-cadherin is a protein that helps cells stick together and collectively form tissues. Cancer cells that loosen their adhesive tissue bonds stop producing T-cadherin, and in tumors, only the blood vessels that supply oxygen and nutrients express this protein.

Now, Barbara Ranscht, Ph.D., and Robert Oshima, Ph.D., at Burnham have led a team that developed the first living model to study this protein’s effect on tumor angiogenesis by creating a strain of mice that develops spontaneous mammary gland tumors in the absence of T-cadherin. Their results appeared March 1 in Cancer Research.

“Evidence of T-cadherin’s role in vascularization has been somewhat controversial,” explains Dr. Ranscht, senior author of the study, which includes Drs. Lionel Hebbard and Michèle Garlatti from the Burnham Institute as equally contributing first authors and Drs. Robert Cardiff and Lawrence Young as collaborators from the University of California, Davis. “But our knockout model clearly shows that T-cadherin plays a role in promoting tumor vascularization, with implications for tumor growth and animal survival.”

The tumor model developed in Dr. Ranscht’s laboratory shows that loss of T-cadherin slows down tumor growth and improves survival compared to controls where T-cadherin is present: The absence of T-cadherin delays tumor growth by an average of 10 days, decreases tumor size, and apoptosis markers, indicators of cell suicide, are six times higher. The tumor-bearing knockouts live an average of 18.5 days longer than their wild-type counterparts, which translates into approximately 18 months of human life span.

The normal models in the study developed solid adenocarcinoma breast tumors, whereas the knockouts formed poorly-differentiated breast tumors with fewer blood vessels. When the adenocarcinoma tumors were transplanted into normal and T-cadherin-deficient mammary glands the knockouts were deficient in growing new blood vessels to the graft.

Stunting blood vessel growth restricts tumors and prolongs survival—a strategy behind anti-angiogenesis cancer drugs like Avastin—so these results were somewhat expected, says Dr. Ranscht. “But what surprised us,” she adds, “was that even though our models survived longer, their tumor pathology worsened.” Without T-cadherin-mediated vascularization, breast cancer cells consistently metastasized to the lungs, and this did not happen in the control mice where the tumors were highly vascularized.

The reasons for this trend are not clear: loose connections between vascular cells may make it easier for tumor cells to break off and enter the blood stream, or low blood flow and oxygen levels in the tumor environment may cause free radicals to build up, spurring further mutations and malignancy.

Either way, says Dr. Ranscht, “Our work provides a cautionary example that restricting tumor angiogenesis might result in more aggressive disease in the long run. Thus, anti-angiogenic therapies should be carefully evaluated, because if growth at the primary tumor site slows but at the same time women develop more aggressive, metastatic cancers, then it is imperative to develop and add treatments that prevent this.”

This study also showed for the first time in a living model that T-cadherin is essential for binding adiponectin, a hormone produced by fatty tissue that is released in inversely proportional amounts to body fat. Adiponectin has a protective effect against metabolic diseases including diabetes, hypertension, heart disease, and stroke; now for the first time it is linked in a living model with vascular function, a relationship that the Burnham team is still exploring. “While the link between obesity and breast cancer is complex, this study shows that in the mouse, T-cadherin sequesters much of the adiponectin and thus provides a conceptual link between obesity and breast cancer” notes Dr. Oshima.

This research is supported by grants from the National Institutes of Health and the Department of Defense.

About Burnham Institute for Medical Research
Burnham Institute for Medical Research uses an entrepreneurial, collaborative approach to medical research to reveal the fundamental molecular causes of disease and devise the innovative therapies of tomorrow. The Institute is organized into five research centers: a National Cancer Institute-designated Cancer Center; the Del E. Webb Center for Neurosciences, Aging and Stem Cell Research; an Infectious and Inflammatory Disease Research Center; a Diabetes and Obesity Research Center; and the Sanford Children’s Health Research Center. Thanks to the quality of its faculty members, Burnham ranks among the top 25 organizations worldwide (according to the Institute for Scientific Information) for its research impact and among the top four research institutes nationally for NIH grant funding. Burnham is a nonprofit, public benefit corporation headquartered in La Jolla, California, with campuses in Orlando, Florida and Santa Barbara, California.

Andrea Moser | EurekAlert!
Further information:
http://www.burnham.org

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>