Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell breakthrough offers diabetes hope

07.04.2008
Scientists have discovered a new technique for turning embryonic stem cells into insulin-producing pancreatic tissue in what could prove a significant breakthrough in the quest to find new treatments for diabetes.

The University of Manchester team, working with colleagues at the University of Sheffield, were able to genetically manipulate the stem cells so that they produced an important protein known as a ‘transcription factor’.

Stem cells have the ability to become any type of cell, so scientists believe they may hold the key to treating a number of diseases including Alzheimer’s, Parkinson’s and diabetes.

However, a major stumbling block to developing new treatments has been the difficulty scientists have faced ensuring the stem cells turn into the type of cell required for any particular condition – in the case of diabetes, pancreatic cells.

“Unprompted, the majority of stem cells turn into simple nerve cells called neurons,” explained Dr Karen Cosgrove, who led the team in Manchester’s Faculty of Life Sciences.

“Less than one per cent of embryonic stem cells would normally become insulin-producing pancreatic cells, so the challenge has been to find a way of producing much greater quantities of these cells.”

The pancreas contains different types of specialised cells – exocrine cells, which produce enzymes to aid digestion, and endocrine cells, including beta cells, which produce the hormone insulin to regulate the blood glucose levels. Diabetes results when there is not enough insulin to meet the body’s demands.

There are two forms of the disease: type-1 diabetes is due to not enough insulin being produced by the pancreas, while type-2 or adult-onset diabetes occurs when the body fails to respond properly to the insulin that is produced.

The team found that the transcription factor PAX4 encouraged high numbers of embryonic stem cells – about 20% – to become pancreatic beta cells with the potential to produce insulin when transplanted into the body.

Furthermore, the scientists for the first time were able to separate the new beta cells from other types of cell produced using a technique called ‘fluorescent-activated cell sorting’ which uses a special dye to colour the pancreatic cells green.

“Research in the United States has shown that transplanting a mixture of differentiated cells and stem cells can cause cancer, so the ability to isolate the pancreatic cells in the lab is a major boost in our bid to develop a successful therapy,” said Dr Cosgrove.

“Scientists have had some success increasing the number of pancreatic cells produced by altering the environment in which the stem cells develop, so the next stage of our research will be to combine both methods to see what proportions we can achieve.”

Scientists believe that transplanting functional beta cells into patients, most likely into their liver where there is a strong blood supply, offers the best hope for finding a cure for type-1 diabetes. It could also offer hope to those with type-2 diabetes whose condition requires insulin injections.

But the more immediate benefit of the team’s research is likely to be in providing researchers with a ready-made supply of human pancreatic cells on which to study the disease process of diabetes and test new drugs.

Aeron Haworth | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Health and Medicine:

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

nachricht Camouflage apples
22.03.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>