Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell breakthrough offers diabetes hope

07.04.2008
Scientists have discovered a new technique for turning embryonic stem cells into insulin-producing pancreatic tissue in what could prove a significant breakthrough in the quest to find new treatments for diabetes.

The University of Manchester team, working with colleagues at the University of Sheffield, were able to genetically manipulate the stem cells so that they produced an important protein known as a ‘transcription factor’.

Stem cells have the ability to become any type of cell, so scientists believe they may hold the key to treating a number of diseases including Alzheimer’s, Parkinson’s and diabetes.

However, a major stumbling block to developing new treatments has been the difficulty scientists have faced ensuring the stem cells turn into the type of cell required for any particular condition – in the case of diabetes, pancreatic cells.

“Unprompted, the majority of stem cells turn into simple nerve cells called neurons,” explained Dr Karen Cosgrove, who led the team in Manchester’s Faculty of Life Sciences.

“Less than one per cent of embryonic stem cells would normally become insulin-producing pancreatic cells, so the challenge has been to find a way of producing much greater quantities of these cells.”

The pancreas contains different types of specialised cells – exocrine cells, which produce enzymes to aid digestion, and endocrine cells, including beta cells, which produce the hormone insulin to regulate the blood glucose levels. Diabetes results when there is not enough insulin to meet the body’s demands.

There are two forms of the disease: type-1 diabetes is due to not enough insulin being produced by the pancreas, while type-2 or adult-onset diabetes occurs when the body fails to respond properly to the insulin that is produced.

The team found that the transcription factor PAX4 encouraged high numbers of embryonic stem cells – about 20% – to become pancreatic beta cells with the potential to produce insulin when transplanted into the body.

Furthermore, the scientists for the first time were able to separate the new beta cells from other types of cell produced using a technique called ‘fluorescent-activated cell sorting’ which uses a special dye to colour the pancreatic cells green.

“Research in the United States has shown that transplanting a mixture of differentiated cells and stem cells can cause cancer, so the ability to isolate the pancreatic cells in the lab is a major boost in our bid to develop a successful therapy,” said Dr Cosgrove.

“Scientists have had some success increasing the number of pancreatic cells produced by altering the environment in which the stem cells develop, so the next stage of our research will be to combine both methods to see what proportions we can achieve.”

Scientists believe that transplanting functional beta cells into patients, most likely into their liver where there is a strong blood supply, offers the best hope for finding a cure for type-1 diabetes. It could also offer hope to those with type-2 diabetes whose condition requires insulin injections.

But the more immediate benefit of the team’s research is likely to be in providing researchers with a ready-made supply of human pancreatic cells on which to study the disease process of diabetes and test new drugs.

Aeron Haworth | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>