Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme complex could be key to new cancer treatments

07.04.2008
Penn State scientists are the first to observe in living cells a key step in the creation of adenine and guanine, two of the four building blocks that comprise DNA.

Also called purines, the two building blocks are essential for cell replication. The findings, which will be published in the 4 April 2008 issue of the journal Science, could lead to new cancer treatments that prevent cancer cells from replicating by interfering with their abilities to make purines.

The group used cervical cancer cells--which have an increased demand for purines due to their rapid rates of replication--to demonstrate that a group of six enzymes is involved in the creation of purines. "Our research shows that these enzymes form a cluster prior to purine formation," said Erin Sheets, an assistant professor of chemistry and a collaborator on the project.

Although other researchers had, in the past, studied the enzymes individually in test tubes, no one, until now, had examined the group of enzymes together in living cells. "This is the first time that anyone has used the appropriate technology to look for this kind of complex in a living cell," said the team's leader Stephen Benkovic, Evan Pugh Professor of Chemistry and holder of the Eberly Family Chair in Chemistry.

Postdoctoral associates Songon An and Ravindra Kumar, from the Benkovic group, studied the enzyme clusters using a technique called fluorescence microscopy, in which fluorescent proteins are attached to molecules of interest and viewed under a special microscope. According to Sheets, the technique makes it easier to observe specific molecules in a cell. "It's like giving a bright orange helmet to your favorite football player so you can more easily monitor his actions," she said.

The researchers attached fluorescent proteins to the enzymes of cells grown in the presence and absence of purines. They found that in the absence of purines, enzymes formed clusters at much higher rates, suggesting that they play a role in the creation of new purines. In contrast, cells also can produce purines by recycling old purine material. Owing to this salvage process, cells do not always need enzyme clusters; indeed, cluster formation was not observed in cells that were grown in the presence of purines. In a key experiment, the researchers were able to influence the association and dissociation of the enzyme cluster by changing the cells' exposure to purines.

Not all of the cells that were grown in the absence of purines contained enzyme clusters. "We think that the enzymes form clusters only when a cell needs purines, and that happens when a cell is required to replicate its DNA at a certain stage in its cell cycle," said Sheets. "Since each of our samples contain cells at different stages of the cell cycle, we did not expect all of them to be actively replicating their DNA. Therefore, we weren't surprised to find that some of our cells did not contain enzyme clusters."

Because purines are necessary for DNA replication and, ultimately, for cell replication, the ability to halt purine synthesis could prove to be a valuable method for treating cancer. "Cancer cells have very high demands for purines," said Benkovic. "If we can find a way to disrupt the formation of this particular enzyme cluster, it could become a potential new target for cancer therapy."

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>