Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Immune System and Cancer - New Insights into a Not Always Healthy Interplay

31.03.2008
For a long time, scientists believed that the immune system acted to fight cancer development. However, recent findings demonstrate that the immune system also acts to promote cancer progression.

At the International conference “Invasion and Metastasis” held at the Max Delbrück Center for Molecular Medicine (MDC) in Berlin, Dr. David DeNardo from the laboratory of Professor Lisa Coussens from the University of California, San Francisco, USA reported on how tumours use immune cells to grow faster and disseminate in the body.

When germs infiltrate a wound after injury, the body can well defend itself. Immune cells recognize the pathogens and initiate inflammation to limit infection. Attracted by this warning, many different cells of the immune system migrate to the centre of inflammation to help fight off the intruders. The injured area gets hot and red and becomes more sensitive and swollen. When the healing process is completed, inflammation abates and the immune cells withdraw. When some types of immune cells encounter tumour cells, they can also cause inflammation. Compared to normal injury, however, these immune cells often do not withdraw, but rather generate an enduring, chronic inflammation. “Therefore, we call tumours wounds that never heal,” Dr. DeNardo illustrated.

During the healing process, the immune cells attracted to a wound not only combat the invaders, but also produce growth factors and so-called proteases, enzymes that remodel the connective structures between cells. In addition, new blood vessels are formed to provide the injured tissue with oxygen and nutrients. This formation of new blood vessels is known as angiogenesis. „Normally these mechanisms enhance sealing of the wound,” Dr. DeNardo said. “However, cancer cells exploit them for their own interests.”

Growth factors permit tumour cells to continue proliferating when proteases remodel the connective structures between cells and thus enable single cancer cells to disseminate from the original tumour. However, angiogenesis also helps metastases, the dangerous daughters of a primary tumour, to form. The new blood vessels grant single disseminated cancer cells access to the bloodstream much faster.

“Scientists are trying to develop strategies to stop these processes of inflammation and this way,” Dr. DeNardo hopes, “help cancer patients.” It has already been shown that some cancer metastases develop more rarely in patients who regularly take acetylsalicylic acid. This substance inhibits inflammation and thus blocks the processes cancer uses to grow and spread.

Barbara Bachtler | alfa
Further information:
http://www.mdc-berlin.de/en/news
http://cancer.ucsf.edu/coussens/index.php

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>