Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Immune System and Cancer - New Insights into a Not Always Healthy Interplay

31.03.2008
For a long time, scientists believed that the immune system acted to fight cancer development. However, recent findings demonstrate that the immune system also acts to promote cancer progression.

At the International conference “Invasion and Metastasis” held at the Max Delbrück Center for Molecular Medicine (MDC) in Berlin, Dr. David DeNardo from the laboratory of Professor Lisa Coussens from the University of California, San Francisco, USA reported on how tumours use immune cells to grow faster and disseminate in the body.

When germs infiltrate a wound after injury, the body can well defend itself. Immune cells recognize the pathogens and initiate inflammation to limit infection. Attracted by this warning, many different cells of the immune system migrate to the centre of inflammation to help fight off the intruders. The injured area gets hot and red and becomes more sensitive and swollen. When the healing process is completed, inflammation abates and the immune cells withdraw. When some types of immune cells encounter tumour cells, they can also cause inflammation. Compared to normal injury, however, these immune cells often do not withdraw, but rather generate an enduring, chronic inflammation. “Therefore, we call tumours wounds that never heal,” Dr. DeNardo illustrated.

During the healing process, the immune cells attracted to a wound not only combat the invaders, but also produce growth factors and so-called proteases, enzymes that remodel the connective structures between cells. In addition, new blood vessels are formed to provide the injured tissue with oxygen and nutrients. This formation of new blood vessels is known as angiogenesis. „Normally these mechanisms enhance sealing of the wound,” Dr. DeNardo said. “However, cancer cells exploit them for their own interests.”

Growth factors permit tumour cells to continue proliferating when proteases remodel the connective structures between cells and thus enable single cancer cells to disseminate from the original tumour. However, angiogenesis also helps metastases, the dangerous daughters of a primary tumour, to form. The new blood vessels grant single disseminated cancer cells access to the bloodstream much faster.

“Scientists are trying to develop strategies to stop these processes of inflammation and this way,” Dr. DeNardo hopes, “help cancer patients.” It has already been shown that some cancer metastases develop more rarely in patients who regularly take acetylsalicylic acid. This substance inhibits inflammation and thus blocks the processes cancer uses to grow and spread.

Barbara Bachtler | alfa
Further information:
http://www.mdc-berlin.de/en/news
http://cancer.ucsf.edu/coussens/index.php

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>