Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thought-Controlled Prosthetics?

17.06.2002


The long-sought ability to control the movement of prosthetic limbs with brain waves has edged a little closer to reality.

In experiments published in the June 7 issue of the journal Science, monkeys were able to move balls around in 3D space on a computer screen just by thinking about it. With a little practice, they got even better at it.

"They achieved nearly the same accuracy and speed as normal arm movements," said senior author Andrew Schwartz, Ph.D., of the Department of Bioengineering at Arizona State University and the Neurosciences Institute in San Diego.



To begin with, two monkeys learned a computer game that required moving balls around in 3D space on the screen. The balls moved in response to the monkeys’ arm movements. The monkeys were rewarded for playing and were allowed to stop when they tired of it.

Then tiny electrodes were painlessly implanted in the monkeys’ brains to record the motor control signals emitted when they moved their arms to play the game. The recorded signals were matched against specific arm/ball movements.

Finally, the monkeys were encouraged to play the game without using their arms. They had to move the balls on the screen using brain signals that corresponded with the appropriate arm movements.

At first they tried to use their arms. But as they realized they could move the balls without moving their arms, they relaxed their arms and continued the game using thought control. As they played, their game skills improved.

Controlling the movement of a prosthetic limb, however, would require learning a wider range of movements, so the two monkeys were given new tasks and 180-degree changes in directions.

"There was no significant difference between the novel and trained target hit rates in either animal, and both monkeys improved their performance with daily practice," the researchers reported.

Even when the monkeys were not allowed to first practice the movements with their arms, they still learned through visual feedback to control the computer images with their brain waves. This suggests that people who are paralyzed and have not had a chance to practice with their arms could still learn to move objects with thought control.

Schwartz’s group cited recent case studies indicating that motor control centers are still active in the brain even after years of paralysis. This activity might be harnessed to control a prosthesis, but the technique and the electrodes used in the current experiments are not yet ready for human testing.

Schwartz’s group is working in the relatively new area of neuroprosthetics. His earlier research in this area was supported by a Special Opportunity Award from The Whitaker Foundation. The lead author on the current paper is Whitaker graduate fellow Dawn Taylor of Arizona State’s Department of Bioengineering.

Other groups have reported some early successes in neuroprosthetic research, mostly in animal experiments. Two years ago, researchers at Case Western Reserve University reported activating a prosthetic implant using human brain waves. The experiments did not require implanting electrodes in the brain.

A quadriplegic wearing a hat dotted with electrodes gained mental control of an arm prosthesis after a series of training sessions in which he learned to regulate his beta-rhythm through biofeedback.

He learned to move a cursor up or down on a computer screen just by thinking about it. Then he was connected to the neuroprosthesis. By thinking about moving the cursor up, he opened his hand, and by thinking "down," his hand closed. He demonstrated using the device to pick up and hold objects like a drinking glass and a fork.

Contact:
Andrew Schwartz, NSI
Frank Blanchard, Whitaker Foundation

Frank Blanchard | EurekAlert
Further information:
http://www.sciencemag.org/cgi/content/full/296/5574/1829/DC1

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>