Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thought-Controlled Prosthetics?

17.06.2002


The long-sought ability to control the movement of prosthetic limbs with brain waves has edged a little closer to reality.

In experiments published in the June 7 issue of the journal Science, monkeys were able to move balls around in 3D space on a computer screen just by thinking about it. With a little practice, they got even better at it.

"They achieved nearly the same accuracy and speed as normal arm movements," said senior author Andrew Schwartz, Ph.D., of the Department of Bioengineering at Arizona State University and the Neurosciences Institute in San Diego.



To begin with, two monkeys learned a computer game that required moving balls around in 3D space on the screen. The balls moved in response to the monkeys’ arm movements. The monkeys were rewarded for playing and were allowed to stop when they tired of it.

Then tiny electrodes were painlessly implanted in the monkeys’ brains to record the motor control signals emitted when they moved their arms to play the game. The recorded signals were matched against specific arm/ball movements.

Finally, the monkeys were encouraged to play the game without using their arms. They had to move the balls on the screen using brain signals that corresponded with the appropriate arm movements.

At first they tried to use their arms. But as they realized they could move the balls without moving their arms, they relaxed their arms and continued the game using thought control. As they played, their game skills improved.

Controlling the movement of a prosthetic limb, however, would require learning a wider range of movements, so the two monkeys were given new tasks and 180-degree changes in directions.

"There was no significant difference between the novel and trained target hit rates in either animal, and both monkeys improved their performance with daily practice," the researchers reported.

Even when the monkeys were not allowed to first practice the movements with their arms, they still learned through visual feedback to control the computer images with their brain waves. This suggests that people who are paralyzed and have not had a chance to practice with their arms could still learn to move objects with thought control.

Schwartz’s group cited recent case studies indicating that motor control centers are still active in the brain even after years of paralysis. This activity might be harnessed to control a prosthesis, but the technique and the electrodes used in the current experiments are not yet ready for human testing.

Schwartz’s group is working in the relatively new area of neuroprosthetics. His earlier research in this area was supported by a Special Opportunity Award from The Whitaker Foundation. The lead author on the current paper is Whitaker graduate fellow Dawn Taylor of Arizona State’s Department of Bioengineering.

Other groups have reported some early successes in neuroprosthetic research, mostly in animal experiments. Two years ago, researchers at Case Western Reserve University reported activating a prosthetic implant using human brain waves. The experiments did not require implanting electrodes in the brain.

A quadriplegic wearing a hat dotted with electrodes gained mental control of an arm prosthesis after a series of training sessions in which he learned to regulate his beta-rhythm through biofeedback.

He learned to move a cursor up or down on a computer screen just by thinking about it. Then he was connected to the neuroprosthesis. By thinking about moving the cursor up, he opened his hand, and by thinking "down," his hand closed. He demonstrated using the device to pick up and hold objects like a drinking glass and a fork.

Contact:
Andrew Schwartz, NSI
Frank Blanchard, Whitaker Foundation

Frank Blanchard | EurekAlert
Further information:
http://www.sciencemag.org/cgi/content/full/296/5574/1829/DC1

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Water cooling for the Earth's crust

23.11.2017 | Earth Sciences

Nano-watch has steady hands

23.11.2017 | Physics and Astronomy

Batteries with better performance and improved safety

23.11.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>