Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Thought-Controlled Prosthetics?


The long-sought ability to control the movement of prosthetic limbs with brain waves has edged a little closer to reality.

In experiments published in the June 7 issue of the journal Science, monkeys were able to move balls around in 3D space on a computer screen just by thinking about it. With a little practice, they got even better at it.

"They achieved nearly the same accuracy and speed as normal arm movements," said senior author Andrew Schwartz, Ph.D., of the Department of Bioengineering at Arizona State University and the Neurosciences Institute in San Diego.

To begin with, two monkeys learned a computer game that required moving balls around in 3D space on the screen. The balls moved in response to the monkeys’ arm movements. The monkeys were rewarded for playing and were allowed to stop when they tired of it.

Then tiny electrodes were painlessly implanted in the monkeys’ brains to record the motor control signals emitted when they moved their arms to play the game. The recorded signals were matched against specific arm/ball movements.

Finally, the monkeys were encouraged to play the game without using their arms. They had to move the balls on the screen using brain signals that corresponded with the appropriate arm movements.

At first they tried to use their arms. But as they realized they could move the balls without moving their arms, they relaxed their arms and continued the game using thought control. As they played, their game skills improved.

Controlling the movement of a prosthetic limb, however, would require learning a wider range of movements, so the two monkeys were given new tasks and 180-degree changes in directions.

"There was no significant difference between the novel and trained target hit rates in either animal, and both monkeys improved their performance with daily practice," the researchers reported.

Even when the monkeys were not allowed to first practice the movements with their arms, they still learned through visual feedback to control the computer images with their brain waves. This suggests that people who are paralyzed and have not had a chance to practice with their arms could still learn to move objects with thought control.

Schwartz’s group cited recent case studies indicating that motor control centers are still active in the brain even after years of paralysis. This activity might be harnessed to control a prosthesis, but the technique and the electrodes used in the current experiments are not yet ready for human testing.

Schwartz’s group is working in the relatively new area of neuroprosthetics. His earlier research in this area was supported by a Special Opportunity Award from The Whitaker Foundation. The lead author on the current paper is Whitaker graduate fellow Dawn Taylor of Arizona State’s Department of Bioengineering.

Other groups have reported some early successes in neuroprosthetic research, mostly in animal experiments. Two years ago, researchers at Case Western Reserve University reported activating a prosthetic implant using human brain waves. The experiments did not require implanting electrodes in the brain.

A quadriplegic wearing a hat dotted with electrodes gained mental control of an arm prosthesis after a series of training sessions in which he learned to regulate his beta-rhythm through biofeedback.

He learned to move a cursor up or down on a computer screen just by thinking about it. Then he was connected to the neuroprosthesis. By thinking about moving the cursor up, he opened his hand, and by thinking "down," his hand closed. He demonstrated using the device to pick up and hold objects like a drinking glass and a fork.

Andrew Schwartz, NSI
Frank Blanchard, Whitaker Foundation

Frank Blanchard | EurekAlert
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>