Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thought-Controlled Prosthetics?

17.06.2002


The long-sought ability to control the movement of prosthetic limbs with brain waves has edged a little closer to reality.

In experiments published in the June 7 issue of the journal Science, monkeys were able to move balls around in 3D space on a computer screen just by thinking about it. With a little practice, they got even better at it.

"They achieved nearly the same accuracy and speed as normal arm movements," said senior author Andrew Schwartz, Ph.D., of the Department of Bioengineering at Arizona State University and the Neurosciences Institute in San Diego.



To begin with, two monkeys learned a computer game that required moving balls around in 3D space on the screen. The balls moved in response to the monkeys’ arm movements. The monkeys were rewarded for playing and were allowed to stop when they tired of it.

Then tiny electrodes were painlessly implanted in the monkeys’ brains to record the motor control signals emitted when they moved their arms to play the game. The recorded signals were matched against specific arm/ball movements.

Finally, the monkeys were encouraged to play the game without using their arms. They had to move the balls on the screen using brain signals that corresponded with the appropriate arm movements.

At first they tried to use their arms. But as they realized they could move the balls without moving their arms, they relaxed their arms and continued the game using thought control. As they played, their game skills improved.

Controlling the movement of a prosthetic limb, however, would require learning a wider range of movements, so the two monkeys were given new tasks and 180-degree changes in directions.

"There was no significant difference between the novel and trained target hit rates in either animal, and both monkeys improved their performance with daily practice," the researchers reported.

Even when the monkeys were not allowed to first practice the movements with their arms, they still learned through visual feedback to control the computer images with their brain waves. This suggests that people who are paralyzed and have not had a chance to practice with their arms could still learn to move objects with thought control.

Schwartz’s group cited recent case studies indicating that motor control centers are still active in the brain even after years of paralysis. This activity might be harnessed to control a prosthesis, but the technique and the electrodes used in the current experiments are not yet ready for human testing.

Schwartz’s group is working in the relatively new area of neuroprosthetics. His earlier research in this area was supported by a Special Opportunity Award from The Whitaker Foundation. The lead author on the current paper is Whitaker graduate fellow Dawn Taylor of Arizona State’s Department of Bioengineering.

Other groups have reported some early successes in neuroprosthetic research, mostly in animal experiments. Two years ago, researchers at Case Western Reserve University reported activating a prosthetic implant using human brain waves. The experiments did not require implanting electrodes in the brain.

A quadriplegic wearing a hat dotted with electrodes gained mental control of an arm prosthesis after a series of training sessions in which he learned to regulate his beta-rhythm through biofeedback.

He learned to move a cursor up or down on a computer screen just by thinking about it. Then he was connected to the neuroprosthesis. By thinking about moving the cursor up, he opened his hand, and by thinking "down," his hand closed. He demonstrated using the device to pick up and hold objects like a drinking glass and a fork.

Contact:
Andrew Schwartz, NSI
Frank Blanchard, Whitaker Foundation

Frank Blanchard | EurekAlert
Further information:
http://www.sciencemag.org/cgi/content/full/296/5574/1829/DC1

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>