Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joint research: Probing the mysteries of a surprisingly tough hydrogel

13.03.2008
Some 46 million people suffer from arthritis in the United States alone. The worst cases require painful surgeries to drill holes in and reinforce joints.

Now researchers working at the National Institute of Standards and Technology (NIST) are studying an unusually pliant yet strong synthetic cartilage replacement in hopes of providing arthritis victims with some relief.

In a paper* presented at the March Meeting of the American Physical Society, NIST scientists and colleagues from Hokkaido University in Japan, reported on a gel that, while having the pliancy of gelatin, won’t break apart even when deformed over 1,000 percent. By using NIST’s neutron research facility to show how the molecules in the gel sustain such large deformations, the research team hopes to make it easier to design materials with even better mechanical properties.

Known as double-network hydrogels, the incredible strength of these new materials was a happy surprise when first discovered by researchers at Hokkaido in 2003. Most conventionally prepared hydrogels—materials that are 80 to 90 percent water held in a polymer network—easily break apart like a gelatin. The Japanese team serendipitously discovered that the addition of a second polymer to the gel made them so tough that they rivaled cartilage—tissue which can withstand the abuse of hundreds of pounds of pressure. A combination of a brittle hydrogel and a soft polymer solution leads to a surprisingly tough material.

Initial work using NIST’s neutron scattering techniques to explore the structure of the gel found unexpected results. The two polymers** were attracted to each other—despite the fact that one polymer is negatively charged and the other neutral—and can withstand a certain force before they can be pulled apart. The total amount of force that can be endured by this polymer pair gets amplified enormously because there are many contacts along each long chain. Efficacy of stress transfer between the long added chain and gel network forms the cornerstone of the toughening mechanism in DN-gels.

The latest paper discusses a molecular-level toughening mechanism proposed based on neutron scattering measurements that gather, in detail, how the two polymers behave when the gel is deformed. Under deformation, these two polymers arrange themselves into an alternating, well-ordered, periodic pattern that is repeated approximately every 2 microns. This periodic structure is a hundred times larger than what is usually seen in molecules under deformation and its formation elegantly dissipates a large amount of deformation energy to stabilize the gel from crumbling apart.

Establishing the details of the molecular structure will allow for more precise design of the next generation of hydrogels that are tough and rigid at the same time. Real cartilage goes through a process of constant daily destruction and regeneration under everyday stresses; the researchers hope a good synthetic cartilage could endure year after year under the rigors of the body before needing to be replaced.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>