Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCF researchers discover a new protein family implicated in inflammatory diseases

11.03.2008
A University of Central Florida research team has discovered a new protein family that may play an important role in preventing inflammatory diseases such as arthritis, some forms of cancer and even heart disease.

The findings that in the future may aid the body’s defense system are published in the March 7 edition of the Journal of Biological Chemistry. The research is partially funded by the National Institutes of Health.

“What we found is a family of proteins that control macrophage activation,” researcher Mingui Fu said from a laboratory in the Burnett School of Biomedical Sciences at UCF.

Macrophages are the body’s self-cleaners. They live in the bloodstream and are called to action when bacteria or other foreign objects attack. Scientists have been studying what triggers them, but no one has come up with a step-by-step process yet. Once triggered, macrophages travel to the infection site and gobble up the invader, helping the body heal. The attack is manifested by inflammation at the infection site.

When everything works right, the inflammation goes away and the person’s health improves. But when macrophages go awry, they can cause more harm than good. Sometimes the macrophages mistake the body’s own organs for invaders and attack, and that can cause arthritis or some forms of cancer. Sometimes the cleaners fail to detect threats, such as malignant cancer cells, which then go unregulated and can turn into fatal tumors.

When Fu arrived at UCF in 2007, he teamed up with Pappachan Kolattukudy, the director of the Burnett School of Biomedical Sciences. Kolattukudy’s laboratory has been studying for two decades how a small protein called MCP, produced at the site of injury, infection or inflammation, attracts macrophages to the site to clean up. Last year his team published the discovery of a novel gene called MCPIP that is turned on by MCP. They showed that MCPIP is involved in the development of ischemic heart failure, the leading cause of death. This team has been exploring how this new gene works.

MCPIP turns out to be the first member of a small, newly discovered gene family called CCCH-Zinc fingure proteins. This family appears to switch the macrophages on and off. The researchers continue to study different aspects of the proteins because of the possibility that they will be critical in treating and curing inflammatory diseases.

Kolattukudy said the new protein holds a lot of promise, but more studies are needed.

“Because this novel protein has key roles to play in the major inflammatory diseases such as cardiovascular disease, cancer and obesity-induced type2 diabetes, it is a promising drug target,” Kolattukudy said. “We have a patent application filed on this protein for that purpose.”

Zenaida Gonzalez Kotala | EurekAlert!
Further information:
http://www.ucf.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>