Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low levels of PYY hormone a very early indicator of type 2 diabetes

11.03.2008
It may soon be possible to take a simple blood test and predict whether or not someone has low levels of a particular molecule, predisposing them to the development of Type 2 diabetes. If the test is positive, it may then be possible to use preventative treatment, slowing down, or even halting that development.

Such is the hope of scientists and clinicians at Sydney’s Garvan Institute of Medical Research who have shown conclusively that people who produce low levels of the molecule PYY have a higher risk of developing Type 2 diabetes and obesity.

The findings were published online on 4 March in the prestigious International Journal of Obesity.

It is already known that the hormone PYY, which is released from the gut after a meal, creates a feeling of satiety. When PYY is in oversupply, it prevents diet-induced obesity in mice.

Professor Herbert Herzog, Director of Garvan’s Neuroscience Program, and an expert on appetite, says that the new findings are important in that they show a metabolic defect before the presence of any disease or manifestation of weight gain. “We can now see that low PYY levels after eating are a very early predictor of the development of obesity and Type 2 diabetes,” he said.

Professor Lesley Campbell, Director of Diabetes Services at St. Vincent’s Hospital and a senior member of Garvan’s Diabetes and Obesity Clinical Studies group, has been researching genetic factors in the development of Type 2 diabetes for over 10 years. Specifically, her research looks at people before they get the disease, the contributing factors, and the effects of the diabetes.

Professor Campbell has already published findings that insulin resistant people, with a family history of Type 2 diabetes, have low levels of PYY. “In earlier studies we hinted at the fact that before any of the abnormalities of diabetes are present, people already have an abnormality of satiety, marked by the lack of the secretion of this PYY hormone,” she said.

“We now have published that, even earlier in the development of diabetes, people who are not yet insulin resistant show a low secretion of PYY. They have a blunted post-meal secretion of this hormone, making them less likely to feel satiety, and more likely to gain weight.”

Professor Campbell’s research involved elaborate testing of two groups of people, eight in each group, over a period of two years. One group had relatives with Type 2 diabetes, the other group had no family history of the disease. The groups were matched for gender, for age and for adiposity.

“It was most important to match the groups for their fatness,” said Professor Campbell. “The only difference was their relatives. You assume that they are carrying the genetic burden of diabetes, which we already know to be a reality.”

“Low levels of PYY at this very early pre-diabetes stage could be used as a marker, or predictor, that Type 2 diabetes is very likely to develop.”

“As a clinician, I am hopeful that it will be possible to screen extensively in the future, and therefore stem the spread of this debilitating disease.”

Alison Heather | EurekAlert!
Further information:
http://www.garvan.org.au

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>